Intercalation and delamination of layered carbides and carbonitrides
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).
Podsiadlo, P. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007).
Ma, R. Z. & Sasaki, T. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv. Mater. 22, 5082–5104 (2010).
McKelvy, M. J. & Glaunsinger, W. S. Molecular intercalation reactions in lamellar compounds. Annu. Rev. Mater. Sci. 41, 497–523 (1990).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Stoller, M. D., Park, S., Zhu, Y., An, J. & Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 8, 3498–3502 (2008).
Eda, G. & Chhowalla, M. Chemically derived graphene oxide: towards large-area thin-film electronics and optoelectronics. Adv. Mater. 22, 2392–2415 (2010).
Kumar, A. et al. Direct synthesis of lithium-intercalated graphene for electrochemical energy storage application. ACS Nano. 5, 4345–4349 (2011).
Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).
Zhang, Z., Liu, X., Yakobson, B. I. & Guo, W. Two-dimensional tetragonal TiC monolayer sheet and nanoribbons. J. Am. Chem. Soc. 134, 19326–19329 (2012).
Barsoum, M. W. The MN+1AXN phases: a new class of solids; thermodynamically stable nanolaminates. Prog. Solid State Chem. 28, 201–281 (2000).
Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2 . Adv. Mater. 23, 4248–4253 (2011).
Viculis, L. M., Mack, J. J. & Kaner, R. B. A chemical route to carbon nanoscrolls. Science 299, 1361–1361 (2003).
Savoskin, M. V. et al. Carbon nanoscrolls produced from acceptor-type graphite intercalation compounds. Carbon 45, 2797–2800 (2007).
Enyashin, A. N. & Ivanovskii, A. L. Atomic structure, comparative stability and electronic properties of hydroxylated Ti2C and Ti3C2 nanotubes. Comput. Theor. Chem. 989, 27–32 (2012).
Kurtoglu, M., Naguib, M., Gogotsi, Y. & Barsoum, M. W. First principles study of two-dimensional early transition metal carbides. MRS Commun. 2, 133–137 (2012).
Naguib, M. et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61–64 (2012).
Come, J. et al. A non-aqueous asymmetric cell with a Ti2C-based two-dimensional negative electrode. J. Electrochem. Soc. 159, A1368–A1373 (2012).
Tang, Q., Zhou, Z. & Shen, P. W. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer. J. Am. Chem. Soc. 134, 16909–16916 (2012).
Park, S. et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593–1597 (2009).
Ledoux, R. L. & White, J. L. Infrared studies of hydrogen bonding interaction between kaolinite surfaces and intercalated potassium acetate, hydrazine, formamide, and urea. J. Colloid Interf. Sci. 21, 127–152 (1966).
Frost, R. L., Kristof, J., Horvath, E., Martens, W. N. & Kloprogge, J. T. Complexity of intercalation of hydrazine into kaolinite - A controlled rate thermal analysis and DRIFT spectroscopic study. J. Colloid Interf. Sci. 251, 350–359 (2002).
Deng, Y. J., Dixon, J. B. & White, G. N. Molecular configurations and orientations of hydrazine between structural layers of kaolinite. J. Colloid Interf. Sci. 257, 208–227 (2003).
Olejnik, S., Aylmore, L. A. G., Posner, A. M. & Quirk, J. P. Infrared spectra of kaolin mineral-dimethyl sulfoxide complexes. J. Phys. Chem. 72, 241–249 (1968).
Su, L. W., Zhou, Z. & Shen, P. W. Ni/C hierarchical nanostructures with Ni nanoparticles highly dispersed in N-containing carbon nanosheets: origin of Li storage capacity. J. Phys. Chem. C 116, 23974–23980 (2012).
Su, L., Zhou, Z. & Shen, P. Core–shell Fe@Fe3C/C nanocomposites as anode materials for Li ion batteries. Electrochim. Acta. 87, 180–185 (2013).
Su, L. et al. CoCO3 submicrocube/graphene composites with high lithium storage capability. Nano Energy http://dx.doi.org/10.1016/j.nanoen.2012.09.012.
Laruelle, S. et al. On the origin of the extra electrochemical capacity displayed by MO/Li cells at low potential. J. Electrochem. Soc. 149, A627–A634 (2002).
Guo, B. et al. Electrochemically fabricated polypyrrole–cobalt–oxygen coordination complex as high-performance lithium-storage materials. Chem. Eur. J. 17, 14878–14884 (2011).
Wang, X.-L. et al. Visualizing the chemistry and structure dynamics in lithium-ion batteries by in-situ neutron diffraction. Sci. Rep. 2, 1–7 (2012).
Nakahara, K., Nakajima, R., Matsushima, T. & Majima, H. Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells. J. Power Sources 117, 131–136 (2003).