Interactive wiimote gaze stabilization exercise training system for patients with vestibular hypofunction

Po-Yin Chen1,2,3, Wan-Ling Hsieh2,3, Shun-Hwa Wei3, Chung-Lan Kao1,3,4
1Department of Physical Medicine & Rehabilitation, Taipei Veterans General Hospital, Taipei, Taiwan
2Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
3Institute of Physical Therapy and Assistive Technology, National Yang-Ming University, School of Biomedical Science and Engineering, Taipei, Taiwan
4School of Medicine, National Yang-Ming University, Taipei, Taiwan

Tóm tắt

Peripheral vestibular hypofunction is a major cause of dizziness. When complicated with postural imbalance, this condition can lead to an increased incidence of falls. In traditional clinical practice, gaze stabilization exercise is commonly used to rehabilitate patients. In this study, we established a computer-aided vestibular rehabilitation system by coupling infrared LEDs to an infrared receiver. This system enabled the subjects’ head-turning actions to be quantified, and the training was performed using vestibular exercise combined with computer games and interactive video games that simulate daily life activities. Three unilateral and one bilateral vestibular hypofunction patients volunteered to participate in this study. The participants received 30 minutes of computer-aided vestibular rehabilitation training 2 days per week for 6 weeks. Pre-training and post-training assessments were completed, and a follow-up assessment was completed 1 month after the end of the training period. After 6 weeks of training, significant improvements in balance and dynamic visual acuity (DVA) were observed in the four participants. Self-reports of dizziness, anxiety and depressed mood all decreased significantly. Significant improvements in self-confidence and physical performance were also observed. The effectiveness of this training was maintained for at least 1 month after the end of the training period. Real-time monitoring of training performance can be achieved using this rehabilitation platform. Patients demonstrated a reduction in dizziness symptoms after 6 weeks of training with this short-term interactive game approach. This treatment paradigm also improved the patients’ balance function. This system could provide a convenient, safe and affordable treatment option for clinical practitioners.

Tài liệu tham khảo

Sloane P, Blazer D, George LK: Dizziness in a community elderly population. J Am Geriatr Soc 1989,37(2):101-108. Gassmann KG, Rupprecht R: Dizziness in an older community dwelling population: a multifactorial syndrome. J Nutr Health Aging 2009,13(3):278-282. 10.1007/s12603-009-0073-2 Agrawal Y, et al.: Disorders of balance and vestibular function in US adults: data from the national health and nutrition examination survey, 2001-2004. Arch Intern Med 2009,169(10):938-944. 10.1001/archinternmed.2009.66 Grossman GE, Leigh RJ, Bruce EN, Huebner WP, Lanska DJ: Performance of the human vestibuloocular reflex during locomotion. J Neurophysiol 1989, 62: 264-272. Hess K, Gresty M, Leech J: Clinical and theoretical aspects of head movement dependent oscillopsia(HMDO): a review. J Neurol 1978, 219: 151-157. 10.1007/BF00314530 Demer JL, Oas JG, Baloh RW: Visual-vestibular interaction in humans during active and passive, vertical head movement. J Vestib Res 1993, 3: 101-114. Leigh RJ, et al.: High-frequency vestibuloocular reflex as a diagnostic tool. Ann N Y Acad Sci 1992, 656: 305-314. 10.1111/j.1749-6632.1992.tb25217.x Leigh RJ, Brandt T: A reevaluation of the vestibulo-ocular reflex: new ideas of its purpose, properties, neural substrate, and disorders. Neurology 1993,43(7):1288-1295. 10.1212/WNL.43.7.1288 Herdman SJ, Hall CD, Schubert MC, Das VE, Tusa RJ: Recovery of dynamic visual acuity in bilateral vestibular hypofunction. Arch Otolaryngol Head Neck Surg 2007, 133: 383-389. 10.1001/archotol.133.4.383 Sveistrup H, et al.: Experimental studies of virtual reality-delivered compared to conventional exercise programs for rehabilitation. Cyberpsychol Behav 2003,6(3):245-249. 10.1089/109493103322011524 Merians AS, et al.: Virtual reality-augmented rehabilitation for patients following stroke. Phys Ther 2002,82(9):898-915. Girone M, et al.: Orthopedic rehabilitation using the “rutgers ankle” interface. Stud Health Technol Inform 2000, 70: 89-95. Viirre E: Vestibular telemedicine and rehabilitation. Applications for virtual reality. Stud Health Technol Inform 1996, 29: 299-305. Viirre E, Draper M, Gailey C, Miller D, Furness T: Adaptation of the VOR in patients with low VOR gains. J Vestib Res 1998,8(4):331-334. Kramer PD, et al.: A versatile stereoscopic visual display system for vestibular and oculomotor research. J Vestib Res 1998,8(5):363-379. Sparto PJ, et al.: Simulator sickness when performing gaze shifts within a wide field of view optic flow environment: preliminary evidence for using virtual reality in vestibular rehabilitation. J Neuroeng Rehabil 2004,1(1):14. 10.1186/1743-0003-1-14 Chang CP, Hain TC: A theory for treating dizziness due to optical flow (visual vertigo). Cyberpsychol Behav 2008,11(4):495-498. 10.1089/cpb.2007.0075 Anderson F, Annett M, Bischof WF: Lean on Wii: physical rehabilitation with virtual reality Wii peripherals. Stud Health Technol Inform 2010, 154: 229-234. Yamada M, et al.: The reliability and preliminary validity of game-based fall risk assessment in community-dwelling older adults. Geriatr Nurs 2011,32(3):188-194. 10.1016/j.gerinurse.2011.02.002 Young W, et al.: Assessing and training standing balance in older adults: a novel approach using the ‘Nintendo Wii’ balance board. Gait Posture 2011,33(2):303-305. 10.1016/j.gaitpost.2010.10.089 Gonzalez-Fernandez M, et al.: eBaViR, easy balance virtual rehabilitation system: a study with patients. Stud Health Technol Inform 2010, 154: 61-66. Mouawad MR, et al.: Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study. J Rehabil Med 2011,43(6):527-533. 10.2340/16501977-0816 Jacobson PG, Newman W: Craig, the development of the dizziness handicap inventory. Arch Otolaryngol Head Neck Surg 1990, 116: 424-427. 10.1001/archotol.1990.01870040046011 Enloe LJ, Shields RK: Evaluation of health-related quality of life in individuals with vestibular disease using disease-specific and general outcome measures. Phys Ther 1997,77(9):890-903. Powell LE, Myers AM: The activities-specific balance confidence (ABC) scale. J Gerontal Med Sci 1995, 50A: M28-M34. 10.1093/gerona/50A.1.M28 Hsu PC, Miller WC: Reliability of the chinese version of the activities-specific balance confidence scale. Disabil Rehabil 2006,28(20):1287-1292. 10.1080/09638280600638414 Zigmond AS, Snaith RP: The hospital anxiety and depression scale. Acta Psychiatr Scand 1983, 67: 361-370. 10.1111/j.1600-0447.1983.tb09716.x Bjelland I, et al.: The validity of the hospital anxiety and depression scale: an updated literature review. J Psychosom Res 2002,52(2):69-77. 10.1016/S0022-3999(01)00296-3 Tinetti ME: Performance-oriented assessment of mobility problems in elderly patients. J Am Geriatr Soc 1986, 34: 119-126. Lin MR, et al.: Psychometric comparisons of the timed Up and Go, One‐Leg stand, functional reach, and tinetti balance measures in community‐dwelling older people. J Am Geriatr Soc 2004,52(8):1343-1348. 10.1111/j.1532-5415.2004.52366.x Shumway-Cook A, et al.: Predicting the probability for falls in community-dwelling older adults. Phys Ther 1997,77(8):812-819. Whitney S, Hudak M, Marchetti G: The dynamic gait index relates to self-reported fall history in individuals with vestibular dysfunction. J Vestib Res 2000,10(2):99-106. Herdman SJ, et al.: Recovery of dynamic visual acuity in unilateral vestibular hypofunction. Arch Otolaryngol Head Neck Surg 2003,129(8):819. 10.1001/archotol.129.8.819 Whitney S, Wrisley D, Furman J: Concurrent validity of the berg balance scale and the dynamic gait index in people with vestibular dysfunction. Physiother Res Int 2003,8(4):178-186. 10.1002/pri.288 Shumway-Cook A, Brauer S, Woollacott M: Predicting the probability for falls in community-dwelling older adults using the timed up and go test. Phys Ther 2000,80(9):896-903. Whitney SL, et al.: The sensitivity and specificity of the timed“ Up & Go” and the dynamic gait index for self-reported falls in persons with vestibular disorders. J Vestib Res 2004,14(5):397. Herdman SJ, et al.: Computerized dynamic visual acuity test in the assessment of vestibular deficits. Am J Otol 1998,19(6):790. Sullivan KJ, et al.: Effects of task-specific locomotor and strength training in adults who were ambulatory after stroke: results of the STEPS randomized clinical trial. Phys Ther 2007,87(12):1580-1602. 10.2522/ptj.20060310 Sullivan KJ, Klassen T, Mulroy S: Combined task-specific training and strengthening effects on locomotor recovery post-stroke: a case study. J Neurol Phys Ther 2006,30(3):130. Betker AL, et al.: Game-based exercises for dynamic short-sitting balance rehabilitation of people with chronic spinal cord and traumatic brain injuries. Phys Ther 2007,87(10):1389-1398. 10.2522/ptj.20060229 Golomb MR, et al.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch Phys Med Rehabil 2010,91(1):1-8. e1 10.1016/j.apmr.2009.08.153 Mon-Williams M, Wann JP, Rushton S: Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display. Ophthalmic Physiol Opt 1993,13(4):387-391. 10.1111/j.1475-1313.1993.tb00496.x Rushton SK, Riddell PM: Developing visual systems and exposure to virtual reality and stereo displays: some concerns and speculations about the demands on accommodation and vergence. Appl Ergon 1999,30(1):69-78. 10.1016/S0003-6870(98)00044-1 Sparto P, et al.: Vestibular rehabilitation using a wide field of view virtual environment . Conf Proc IEEE Eng Med Biol Soc 2004, 7: 4836-4839. Grossman GE, Leigh RJ, Abel LA, et al.: Frequency and velocity of rotational head perturbations during locomotion. Exp Brain Res 1988, 70: 470-476. Das VE, Zivotofsky AZ, DiScenna AO, Leigh RJ: Head perturbations during walking while viewing a head-fixed target. Aviat Space Environ Med 1995, 66: 728-732. David SZ: Vestibular adaptation. In Vestibular rehabilitation. Edited by: Herdman SJ. Philadelphia: F.A Davis Company; 2007:19-31. Schubert MC, Minor LB: Vestibulo-ocular physiology underlying vestibular hypofunction. Phys Ther 2004, 84: 373-385. Baloh RW, Kerber KA: The central vestibular system, in clinical neurophysiology of the vestibular system. Oxford: Oxford University Press; 2011. Peterson B: Cervicocollic and cervicoocular reflexes. In Control of head movement. Edited by: Peterson B, Richmond F. New York: Oxford Press; 1988:90-99. Herdman SJ, Schubert MC, Das VE, Tusa RJ: Recovery of dynamic visual acuity in unilateral vestibular hypofunction. Arch Otolaryngol Head Neck Surg 2003, 129: 819-824. 10.1001/archotol.129.8.819 Schubert MC, Das VE, Tusa RJ, Herdman SJ: Gaze stability during predictable and unpredictable head thrusts [book on CD-ROM]. Washington, DC: Society for Neuroscience ed; 2002. Program No. 266.1 Tian JSI, Demer JL: Dynamic visual acuity during passive and selfgenerated transient head rotation in normal and unilaterally vestibulopathic humans. Exp Brain Res 2002, 142: 486-495. 10.1007/s00221-001-0959-7 Della-Santina CC, Cremer PD, Carey JP, Minor LB: Comparison of head thrust test with head autorotation test reveals that the vestibulo-ocular reflex is enhanced during voluntary head movements. Arch Otolaryngol Head Neck Surg 2002, 128: 1044-1054. Schubert MC, Migliaccio AA, Della Santina CC: Modification of compensatory saccades after aVOR gain recovery. J Vestib Res 2006,16(6):285-291. Schubert MC, Zee DS: Saccade and vestibular ocular motor adaptation. Restor Neurol Neurosci 2010,28(1):9-18. Herdman SJ: Vestibular rehabilitation. Philadelphia: F.A. DAVIS COMPANY; 2000:356-358. Whitney SL, Wrisley DM, Marchetti GF, Furman JM: The effect of age on vestibular rehabilitation outcomes. Laryngoscope 2002, 112: 1785-1790. 10.1097/00005537-200210000-00015 Badke MB, Shea TA, Miedaner JA, Grove CR: Outcomes after rehabilitation for adults with balance dysfunction. Arch Phys Med Rehabil 2004, 85: 227-233. 10.1016/j.apmr.2003.06.006