Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage

Nature Cell Biology - Tập 8 Số 9 - Trang 1025-1031 - 2006
Chuangui Wang1, Lihong Chen2, Xinghua Hou2, Zhenyu Li2, Neha Kabra2, Yihong Ma2, Shino Nemoto3, Toren Finkel3, Wei Gu4, W. Douglas Cress2, Jiandong Chen2
1Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, Tampa, FL 33612, USA.
2Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, USA
3Cardiovascular Branch, National Heart Lung and Blood Institute, Bethesda, USA
4Institute of Cancer Genetics and Department of Pathology, College of Physicians & Surgeons, Columbia University, New York, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Guarante, L. P. Regulation of aging by SIR2. Ann. N. Y. Acad. Sci. 1055, 222 (2005).

Anderson, R. M., Bitterman, K. J., Wood, J. G., Medvedik, O. & Sinclair, D. A. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423, 181–185 (2003).

Tissenbaum, H. A. & Guarente, L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410, 227–230 (2001).

Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 2126–2128 (2000).

Vaziri, H. et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107, 149–159 (2001).

Luo, J. et al. Negative control of p53 by Sir2α promotes cell survival under stress. Cell 107, 137–148 (2001).

Langley, E. et al. Human SIR2 deacetylates p53 and antagonizes PML/p53-induced cellular senescence. EMBO J. 21, 2383–2396 (2002).

Brunet, A. et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015 (2004).

Yang, Y., Hou, H., Haller, E. M., Nicosia, S. V. & Bai, W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 24, 1021–1032 (2005).

Nahle, Z. et al. Direct coupling of the cell cycle and cell death machinery by E2F. Nature Cell Biol. 4, 859–864 (2002).

Johnson, D. G., Schwarz, J. K., Cress, W. D. & Nevins, J. R. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365, 349–352 (1993).

Wu, X. & Levine, A. J. p53 and E2F-1 cooperate to mediate apoptosis. Proc. Natl Acad. Sci. USA 91, 3602–3606 (1994).

Lin, W. C., Lin, F. T. & Nevins, J. R. Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. Genes Dev. 15, 1833–1844 (2001).

Ma, Y., Yuan, J., Huang, M., Jove, R. & Cress, W. D. Regulation of the cyclin D3 promoter by E2F1. J. Biol. Chem. 278, 16770–16776 (2003).

Ma, Y., Cress, W. D. & Haura, E. B. Flavopiridol-induced apoptosis is mediated through up-regulation of E2F1 and repression of Mcl-1. Mol. Cancer Ther. 2, 73–81 (2003).

Nemoto, S., Fergusson, M. M. & Finkel, T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306, 2105–2108 (2004).

Yeung, F. et al. Modulation of NF-RB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369–2380 (2004).

Ma, Y., Freeman, S. N. & Cress, W. D. E2F4 deficiency promotes drug-induced apoptosis. Cancer Biol. Ther. 3, 1262–1269 (2004).

Dyson, N. The regulation of E2F by pRB-family proteins. Genes Dev. 12, 2245–2262 (1998).

Stevens, C., Smith, L. & La Thangue, N. B. Chk2 activates E2F-1 in response to DNA damage. Nature Cell Biol. 5, 401–409 (2003).

Johnson, D. G., Ohtani, K. & Nevins, J. R. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 8, 1514–1525 (1994).

Martinez-Balbas, M. A., Bauer, U. M., Nielsen, S. J., Brehm, A. & Kouzarides, T. Regulation of E2F1 activity by acetylation. EMBO J. 19, 662–671 (2000).

Luo, R. X., Postigo, A. A. & Dean, D. C. Rb interacts with histone deacetylase to repress transcription. Cell 92, 463–473 (1998).

Kowalik, T. F., DeGregori, J., Leone, G., Jakoi, L. & Nevins, J. R. E2F1-specific induction of apoptosis and p53 accumulation, which is blocked by Mdm2. Cell Growth Differ. 9, 113–118 (1998).

Wang, C. et al. Activation of p27Kip1 Expression by E2F1. A negative feedback mechanism. J. Biol. Chem. 280, 12339–12343 (2005).

Pruschy, M., Wirbelauer, C., Glanzmann, C., Bodis, S. & Krek, W. E2F-1 has properties of a radiosensitizer and its regulation by cyclin A kinase is required for cell survival of fibrosarcoma cells lacking p53. Cell Growth Differ. 10, 141–146 (1999).

Chen, W. Y. et al. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123, 437–448 (2005).

Chu, F., Chou, P. M., Zheng, X., Mirkin, B. L. & Rebbaa, A. Control of multidrug resistance gene mdr1 and cancer resistance to chemotherapy by the longevity gene sirt1. Cancer Res. 65, 10183–10187 (2005).

Ford, J., Jiang, M. & Milner, J. Cancer-specific functions of SIRT1 enable human epithelial cancer cell growth and survival. Cancer Res. 65, 10457–10463 (2005).

Rogoff, H. A. et al. Apoptosis associated with deregulated E2F activity is dependent on E2F1 and Atm–Nbs1–Chk2. Mol. Cell Biol. 24, 2968–2977 (2004).