Interaction of Bdellovibrio bacteriovorus with Gram-Negative and Gram-Positive Bacteria in Dual Species and Polymicrobial Communities

Microorganisms - Tập 10 Số 4 - Trang 793
Monique Waso1, Sehaam Khan1, Wesaal Khan2
1Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
2Department of Microbiology, Faculty of Science, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa

Tóm tắt

The interaction of Bdellovibrio bacteriovorus PF13 with mixed bacterial communities, consisting of Gram-negative (Pseudomonas fluorescens and Klebsiella pneumoniae) and Gram-positive (Staphylococcus aureus and Enterococcus faecium) bacteria, was investigated to determine if this wild-type predator preferentially preys on certain bacteria and whether the presence of Gram-positive organisms influences its predation efficiency. In co-culture with P. fluorescens and K. pneumoniae, the cell counts (PFU/mL) of PF13 increased by 5.79 and 5.17 logs (48 h), respectively, while in the dual species assay (P. fluorescens, K. pneumoniae and PF13), the cell counts of PF13 increased by 1.95 logs (24 h). Using ethidium monoazide bromide quantitative polymerase chain reaction (EMA-qPCR), the concentration of PF13 increased by 1.25 to 3.62 logs in the co-culture experiments, by 1.41 to 5.05 logs in dual species cultures and by 2.65 logs in a polymicrobial culture. However, PF13 preferentially preyed on K. pneumoniae in the dual species and polymicrobial cultures, highlighting that the presence of Gram-positive bacteria did not affect the predation efficiency of PF13. This is significant as it implies that the predator can be applied in mixed microbial communities to target Gram-negative pathogens which may pose a health risk to patients, consumers or for the treatment of contaminated water.

Từ khóa


Tài liệu tham khảo

Williams, 2020, Environmental regulation of the distribution and ecology of Bdellovibrio and like organisms, Front. Microbiol., 11, 545070, 10.3389/fmicb.2020.545070

Dwidar, 2012, The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus, BMB Rep., 45, 71, 10.5483/BMBRep.2012.45.2.71

Negus, 2017, Predator versus pathogen: How does predatory Bdellovibrio bacteriovorus interface with the challenges of killing Gram-negative pathogens in a host setting?, Annu. Rev. Microbiol., 71, 441, 10.1146/annurev-micro-090816-093618

Schwudke, 2003, The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-d-Mannoses that replace phosphate residues: Similarities and differences between the lipid A’s and the lipopolysaccharides of the wild-type strain B. bacteriovorus HD100 and its host-independent derivative HI100, J. Biol. Chem., 278, 27502, 10.1074/jbc.M303012200

Saralegui, C., Herencias, C., Halperin, A., De Dios-Caballero, J., Pérez-Viso, B., Salgado-Briegas, S., Fernández-Lanza, V., Cantón, R., Baquero, F., and Prieto, A. (2021). Predation efficiency upon clinical isolates: Bdellovibrio bacteriovorus is prey specific and origin dependent. bioRxiv.

Dashiff, 2010, Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus, J. Appl. Microbiol., 110, 431, 10.1111/j.1365-2672.2010.04900.x

Iebba, 2014, Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates, Front. Microbiol., 5, 280, 10.3389/fmicb.2014.00280

Monnappa, 2014, Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells, Sci. Rep., 4, 3811, 10.1038/srep03811

Im, 2018, Bdellovibrio bacteriovorus HD100, a predator of Gram-negative bacteria, benefits energetically from Staphylococcus aureus biofilms without predation, ISME J., 12, 2090, 10.1038/s41396-018-0154-5

Pantanella, 2018, Behaviour of Bdellovibrio bacteriovorus in the presence of Gram-positive Staphylococcus aureus, New Microbiol., 41, 145

Varon, 1981, Interaction of Bdellovibrio with its prey in mixed microbial populations, Microb. Ecol., 7, 97, 10.1007/BF02032491

Hobley, 2006, Bdellovibrio predation in the presence of decoys: Three-way bacterial interactions revealed by mathematical and experimental analyses, Appl. Environ. Microbiol., 72, 6757, 10.1128/AEM.00844-06

Rogosky, 2006, Differential predation by Bdellovibrio bacteriovorus 109J, Curr. Microbiol., 52, 81, 10.1007/s00284-005-0038-6

Im, 2017, Combined application of bacterial predation and violacein to kill polymicrobial pathogenic communities, Nat. Sci. Rep., 7, 14415

Bratanis, 2020, Biotechnological potential of Bdellovibrio and like organisms and their secreted enzymes, Front. Microbiol., 11, 662, 10.3389/fmicb.2020.00662

Atterbury, 2021, Predatory bacteria as living antibiotics-where are we now?, Microbiology, 167, 1, 10.1099/mic.0.001025

Waso, 2019, Assessment of predatory bacteria and prey interactions using culture-based methods and EMA-qPCR, Microbiol. Res., 228, 126305, 10.1016/j.micres.2019.126305

Waso, 2020, Predatory bacteria in combination with solar disinfection and solar photocatalysis for the treatment of rainwater, Water Res., 169, 115281, 10.1016/j.watres.2019.115281

Yu, 2017, Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement, Front. Environ. Sci. Eng., 11, 1, 10.1007/s11783-017-0900-3

Reyneke, 2017, Comparison of EMA-, PMA- and DNase qPCR for the determination of microbial cell viability, Appl. Microbiol. Biotechnol., 101, 7371, 10.1007/s00253-017-8471-6

Scales, 2014, Microbiology, genomics, and clinical significance of the Pseudomonas fluorescens species complex, an unappreciated colonizer of humans, Clin. Microbiol. Rev., 27, 927, 10.1128/CMR.00044-14

World Health Organization (WHO) (2021, August 30). Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf.

Saxon, E.B., Jackson, R.W., and Bhumbra, S. (2014). Bdellovibrio bacteriovorus HD100 guards against Pseudomonas tolaasii brown-blotch lesions on the surface of post-harvest Agaricus bisporus supermarket mushrooms. BMC Microbiol., 14.

Kadouri, D.E., To, K., Shanks, R.M.Q., and Doi, Y. (2013). Predatory bacteria: A potential ally against multidrug-resistant Gram-negative pathogens. PLoS ONE, 8.

Shatzkes, 2016, Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs, mBio, 7, e01847-16, 10.1128/mBio.01847-16

Jurkevitch, E. (2006). Bdellovibrio and like organisms: Potential sources for new biochemicals and therapeutic agents?. Predatory Prokaryotes. Microbiology Monographs, Springer.

Brinkman, 1999, Influence of a putative ECF sigma factor on expression of the major outer membrane protein, OprF, in Pseudomonas aeruginosa and Pseudomonas fluorescens, J. Bacteriol., 181, 4746, 10.1128/JB.181.16.4746-4754.1999

Bodilis, 2006, Molecular evolution of the major outer-membrane protein gene (oprF) of Pseudomonas, Microbiology, 152, 1075, 10.1099/mic.0.28656-0

Chapalain, 2011, Full virulence of Pseudomonas aeruginosa requires OprF, Infect. Immunol., 79, 1176, 10.1128/IAI.00850-10

Cassin, 2019, Pushing beyond the envelope: The potential roles of OprF in Pseudomonas aeruginosa biofilm formation and pathogenicity, J. Bacteriol., 201, e00050-19, 10.1128/JB.00050-19

Martin, 2018, Colonization, infection, and the accessory genome of Klebsiella pneumoniae, Front. Cell. Infect. Microbiol., 8, 4, 10.3389/fcimb.2018.00004

Llobet, 2015, Deciphering tissue-induced Klebsiella pneumoniae lipid A structure, Proc. Natl. Acad. Sci. USA, 112, E6369, 10.1073/pnas.1508820112

Koval, 1997, Bacterial capsules: No barrier against Bdellovibrio, Microbiology, 143, 749, 10.1099/00221287-143-3-749

Drutz, 1976, Response of Neisseria gonorrhoeae to Bdellovibrio species, Infect. Immunol., 13, 247, 10.1128/iai.13.1.247-251.1976

Varon, 1969, Attachment of Bdellovibrio bacteriovorus to cell wall mutants of Salmonella spp. and Escherichia coli, J. Bacteriol., 97, 977, 10.1128/jb.97.2.977-979.1969

Koval, 1991, Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus, J. Bacteriol., 173, 2244, 10.1128/jb.173.7.2244-2249.1991

Lambert, 2003, A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation, Environ. Microbiol., 5, 127, 10.1046/j.1462-2920.2003.00385.x

Rendulic, 2004, A predator unmasked: Life cycle of Bdellovibrio bacteriovorus from a genomic perspective, Science, 303, 689, 10.1126/science.1093027

Bellehumeur, 2015, Propidium monoazide (PMA) and ethidium bromide monoazide (EMA) improve DNA array and high-throughput sequencing of porcine reproductive and respiratory syndrome virus identification, J. Virol. Methods, 222, 182, 10.1016/j.jviromet.2015.06.014

Reller, 2007, Detection and identification of microorganisms by gene amplification and sequencing, Clin. Infect. Dis., 44, 1108, 10.1086/512818

Roosa, 2014, The Pseudomonas community in metal contaminated sediments as revealed by quantitative PCR: A link with metal bioavailability, Res. Microbiol., 165, 647, 10.1016/j.resmic.2014.07.011