Intensity Based Methods for Brain MRI Longitudinal Registration. A Study on Multiple Sclerosis Patients

Springer Science and Business Media LLC - Tập 12 - Trang 365-379 - 2013
Yago Diez1, Arnau Oliver1, Mariano Cabezas1, Sergi Valverde1, Robert Martí1, Joan Carles Vilanova2, Lluís Ramió-Torrentà3, Àlex Rovira4, Xavier Lladó1
1Computer Vision and Robotics Group, University of Girona, Girona, Spain
2Girona Magnetic Resonance Center, Girona, Spain
3Multiple Sclerosis and Neuroimmunology Unit, Dr. Josep Trueta University Hospital, Institut d’Investigació Biomèdica de Girona, Girona, Spain
4Magnetic Resonance Unit, Department of Radiology, Vall d’Hebron University Hospital, Barcelona, Spain

Tóm tắt

Registration is a key step in many automatic brain Magnetic Resonance Imaging (MRI) applications. In this work we focus on longitudinal registration of brain MRI for Multiple Sclerosis (MS) patients. First of all, we analyze the effect that MS lesions have on registration by synthetically eliminating some of the lesions. Our results show how a widely used method for longitudinal registration such as rigid registration is practically unconcerned by the presence of MS lesions while several non-rigid registration methods produce outputs that are significantly different. We then focus on assessing which is the best registration method for longitudinal MRI images of MS patients. In order to analyze the results obtained for all studied criteria, we use both descriptive statistics and statistical inference: one way ANOVA, pairwise t-tests and permutation tests.

Tài liệu tham khảo

Ardekani, B.A., Guckemus, S., Bachman, A., Hoptman, M.J., Wojtaszek, M., Nierenberg, J. (2005). Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. NeuroImage, 142(1), 67–76. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. Ashburner, J., & Friston, K.J. (2004). Human Brain Function, chap High-dimensional image warping, 2nd edn. (pp. 673–694). Academic Press. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41. Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Bach Cuadra, M. (2011). A review of atlas-based segmentation for magnetic resonance brain images. Computer Methods and Programs in Biomedicine, 104(3), e158–e177. Chard, D.T., Jackson, J.S., Miller, D.H., Wheeler-Kingshott, C.A.M. (2010). Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. Journal of Magnetic Resonance Imaging, 32(1), 223–228. Denton, E.R., Sonoda, L.I., Rueckert, D., Rankin, S.C., Hayes, C., Leach, M.O., Hill, D.L., Hawkes, D.J. (1999). Comparison and evaluation of rigid and non-rigid registration of breast MR images. Journal of Computer Assisted Tomography, 23(5), 800–805. Diez, Y., Oliver, A., Llad´o, X., Freixenet, J., Mart´ı, J., Vilanova, J.C., Martí, R. (2011). Revisiting intensity-based image registration appplied to mammography. IEEE Transactions on Information Technology in BioMedicine, 15(5), 716–725. Elliott, C., Arnold, D.L., Collins, D.L. (2013). Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain mri. IEEE Transactions on Medical Imaging, 32(8), 1490–1502. García-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L. (2013). Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Medical Image Analysis, 17(1), 1–18. Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B.B., Chiang, M., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song Hyun, J., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann, J.J., Parseya, R. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802. Liao, S., Wu, G., Shen, D. (2012). A statistical framework for inter-group image registration. Neuroinformatics, 10(4), 367–378. Liu, C., Iglesias, J.E., Tu, Z. (2013). Deformable templates guided discriminative models for robust 3d brain mri segmentation for the alzheimer’s disease neuroimaging initiative. Neuroinformatics, 11(4), 447–468. Lladó, X., Ganiler, O., Oliver, A., Martí, R., Freixenet, J., Valls, L., Rovira A (2012a). Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology, 54(8), 787–807. Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., Valls, L., Ramió-Torrentà, L., Rovira, A. (2012b). Segmentation of multiple sclerosis lesions in brain MRI: a review of automated approaches. Information Sciences, 186(1), 164–185. Menke, J., & Martinez, T. (2004). Using permutations instead of student’s t distribution for p-values in paired difference algorithm comparisons. In Proceedings IEEE international joint conference on neural networks (pp. 1331–1335). Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S. (2010). Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine, 98(3), 278–284. Moraal, B., Meier, D.S., Poppe, P.A., Geurts, J.J., Vrenken, H., Jonker, W.M., Knol, D.L., van Schijndel, R.A., Pouwels, P.J., Pohl, C., Bauer, L., Sandbrink, R., Guttman, C.R., Barkhof, F. (2009). Subtraction mr images in a multiple sclerosis multicenter clinical trial setting. Radiology, 250(2), 506–514. Moraal, B.,Wattjes, M.P., Geurts, J.J., Knol, D.L., van Schijndel, R.A., Pouwels, P.J., Vrenken, H., Barkhof, F. (2010). Improved detection of active multiple sclerosis lesions: 3d subtraction imaging. Radiology, 255(1), 154–163. Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C. (2011). Dramms: deformable registration via attribute matching and mutual-saliency weighting. Medical Image Analysis, 15(4), 622–639. Parisot, S., Duffau, H., Chemouny, S., Paragios, N. (2012). Joint tumor segmentation and dense deformable registration of brain MR images. In Proceedings medical image computing and computer assisted intervention (pp. 651–658). Prados, F., Boada, I., Feixas, M., Prats-Galino, A., Blasco, G., Puig, J., Pedraza, S. (2012). Information-theoretic approach for automated white matter fiber tracts reconstruction. Neuroinformatics, 10(3), 305–318. Rohlfing, T. (2012). Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Transactions on Medical Imaging, 31(2), 153–163. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J. (1999). Non-rigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18(8), 712–721. Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A. (2006). Diffeomorphic registration using B-splines. In Proceedings medical image computing and computer assisted intervention (pp. 702–709). Schnabel, J., Rueckert, D., Quist, M., Blackall, J., Castellano-Smith, A., Hartkens, T., Penney, G., Hall, W., Liu, H., Truwit, C., Gerritsen, F., Hill, D., Hawkes, D.J. (2001). A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In Proceedings medical image computing and computer assisted intervention (pp. 573–581). Sdika, M., & Pelletier, D. (2009). Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Human Brain Mapping, 30(4), 1060–1067. Shah, M., Xiao, Y., Subbanna, N., Francis, S., Arnold, D.L., Arbel, T. (2011). Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Medical Image Analysis, 15(2), 267–282. Shi, W., Zhuang, X., Pizarro, L., Bai, W., Wang, H., Tung, K., Edwards, P., Rueckert, D. (2012). Registration using sparse free-form deformations. In Proceedings medical image computing and computer assisted intervention (pp. 659–666). Thirion, J.P. (1996). Non-rigid matching using demons. In Proceedings IEEE conference on computer vision and pattern recognition (pp. 245–261). Vercauteren, T., Pennec, X., Perchant, A., Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1 (S1)), S61–S72. Wang, S., Summers, R.M., (2012). Machine learning and radiology. Medical Image Analysis, 16(5), 933–951.