Intelligent viewpoint selection for efficient CT to video registration in laparoscopic liver surgery

Springer Science and Business Media LLC - Tập 12 - Trang 1079-1088 - 2017
Maria R. Robu1, Philip Edwards1, João Ramalhinho1, Stephen Thompson1, Brian Davidson2, David Hawkes1, Danail Stoyanov1, Matthew J. Clarkson1
1Centre For Medical Image Computing, Engineering Front Building, University College London, London, UK
2Royal Free Campus, UCL Medical School, 9th Floor, Royal Free Hospital, London, UK

Tóm tắt

Minimally invasive surgery offers advantages over open surgery due to a shorter recovery time, less pain and trauma for the patient. However, inherent challenges such as lack of tactile feedback and difficulty in controlling bleeding lower the percentage of suitable cases. Augmented reality can show a better visualisation of sub-surface structures and tumour locations by fusing pre-operative CT data with real-time laparoscopic video. Such augmented reality visualisation requires a fast and robust video to CT registration that minimises interruption to the surgical procedure. We propose to use view planning for efficient rigid registration. Given the trocar position, a set of camera positions are sampled and scored based on the corresponding liver surface properties. We implement a simulation framework to validate the proof of concept using a segmented CT model from a human patient. Furthermore, we apply the proposed method on clinical data acquired during a human liver resection. The first experiment motivates the viewpoint scoring strategy and investigates reliable liver regions for accurate registrations in an intuitive visualisation. The second experiment shows wider basins of convergence for higher scoring viewpoints. The third experiment shows that a comparable registration performance can be achieved by at least two merged high scoring views and four low scoring views. Hence, the focus could change from the acquisition of a large liver surface to a small number of distinctive patches, thereby giving a more explicit protocol for surface reconstruction. We discuss the application of the proposed method on clinical data and show initial results. The proposed simulation framework shows promising results to motivate more research into a comprehensive view planning method for efficient registration in laparoscopic liver surgery.

Tài liệu tham khảo

Arbel T, Ferrie FP (2001) Entropy-based gaze planning. Image Vis Comput 19(11):779–786. doi:10.1016/S0262-8856(00)00103-7 Berkmann J, Caelli T (1994) Computation of surface geometry and segmentation using covariance techniques. IEEE Trans Pattern Anal Mach Intell 16(11):1114–1116. doi:10.1109/34.334391 Besl PJ, McKay ND (1992) A method for registration of 3D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256. doi:10.1109/34.121791 Clements LW, Chapman WC, Dawant BM, Galloway RL, Miga MI (2008) Robust surface registration using salient anatomical features for image-guided liver surgery: algorithm and validation. Med Phys 35(6):2528. doi:10.1118/1.2911920 Collins T, Pizarro D, Bartoli A, Canis M, Bourdel N (2013) Realtime wide-baseline registration of the uterus in laparoscopic videos using multiple texture maps. In: Augmented reality environments for medical imaging and computer-assisted interventions, pp 162–171. doi:10.1007/978-3-642-40843-4_18 Costante G, Forster C, Delmerico J, Valigi P, Scaramuzza D (2016) Perception-aware path planning. IEEE Trans Rob Autom, pp 1–16. http://arxiv.org/abs/1605.04151 Deinzer F, Denzler J, Niemann H (2003) Viewpoint selection–planning optimal sequences of views for object recognition. CAIP 2756:65–73. doi:10.1007/978-3-540-45179-2_9 dos Santos TR, Seitel A, Kilgus T, Suwelack S, Wekerle AL, Kenngott H, Speidel S, Schlemmer HP, Meinzer HP, Heimann T, Maier-Hein L (2014) Pose-independent surface matching for intra-operative soft-tissue marker-less registration. Med Image Anal 18(7):1101–1114. doi:10.1016/j.media.2014.06.002 Gelfand N, Ikemoto L, Rusinkiewicz S, Levoy M (2003) Geometrically stable sampling for the icp algorithm. In: 3DIM. IEEE, pp 260–267. doi:10.1109/IM.2003.1240258 Gibson ED, Robu MR, Thompson SA, Edwards PE, Schneider C, Gurusamy K, Davidson BR, Hawkes DJ, Barrat DC, Clarkson MJ (2017) Deep residual networks for automatic segmentation of laparoscopic videos of the liver. In: SPIE, vol 10135, pp 101, 351M–101, 351M–6. doi:10.1117/12.2255975 Guennebaud G, Jacob B (2010) Eigen v3. http://eigen.tuxfamily.org Hughes-Hallett A, Pratt P, Dilley J, Vale J, Darzi A, Mayer E (2015) Augmented reality: 3D image-guided surgery. Cancer Imaging 15(1):1. doi:10.1186/1470-7330-15-S1-O8 Kriegel S, Rink C, Bodenmuller T, Narr A, Suppa M, Hirzinger G (2012) Next-best-scan planning for autonomous 3D modeling. In: IROS, pp 2850–2856. doi:10.1109/IROS.2012.6385624 Low KL, Lastra A (2007) Predetermination of icp registration errors and its application to view planning. In: 3DIM, pp 73–80. doi:10.1109/3DIM.2007.41 Ma B, Ellis RE (2004) Spatial-stiffness analysis of surface-based registration. In: MICCAI, pp 623–630. doi:10.1007/978-3-540-30135-6_76 Ma B, Ellis RE (2005) Unified point selection and surface-based registration using a particle filter. In: MICCAI, pp 75–82. doi:10.1007/11566465_10 Madsen C, Christensen H (1997) A viewpoint planning strategy for determining true angles on polyhedral objects by camera alignment. IEEE Trans Pattern Anal Mach Intell 19(2):158–163. doi:10.1109/34.574798 Mason S (1997) Heuristic reasoning strategy for automated sensor placement. Photogramm Eng Remote Sens 63(9):1093–1101 Puerto-Souza GA, Cadeddu JA, Mariottini GL (2014) Toward long-term and accurate augmented-reality for monocular endoscopic videos. IEEE Trans Biomed Eng 61(10):2609–2620. doi:10.1109/TBME.2014.2323999 Rucker DC, Wu Y, Clements LW, Ondrake JE, Pheiffer TS, Simpson AL, Jarnagin WR, Miga MI (2014) A mechanics-based nonrigid registration method for liver surgery using sparse intraoperative data. IEEE Trans Med Imaging 33(1):147–158. doi:10.1109/TMI.2013.2283016 Rusinkiewicz S, Levoy M (2001) Efficient variants of the icp algorithm. In: 3DIM, pp 145–152. doi:10.1109/IM.2001.924423 Rusu RB, Cousins S (2011) 3D is here: point cloud library (PCL). In: IEEE int conf robot autom. Shanghai, China. doi:10.1109/ICRA.2011.5980567 Scott WR, Roth G, Rivest JF (2003) View planning for automated three-dimensional object reconstruction and inspection. CSUR 35(1):64–96. doi:10.1145/641865.641868 Shang L, Greenspan M (2010) Real-time object recognition in sparse range images using error surface embedding. Int J Comput Vis 89(2–3):211–228. doi:10.1007/s11263-009-0276-3 Sheng W, Xi N, Song M, Chen Y (2001) Graph-based surface merging in CAD-guided dimensional inspection of automotive parts. In: IEEE int conf robot autom, vol 3. IEEE, pp 3127–3132. doi:10.1109/ROBOT.2001.933098 Simon DA (1996) Fast and accurate shape-based registration. Ph.D. thesis, Carnegie Mellon University Pittsburgh Suwelack S, Röhl S, Bodenstedt S, Reichard D, Dillmann R, dos Santos T, Maier-Hein L, Wagner M, Wünscher J, Kenngott H, Müller BP, Speidel S (2014) Physics-based shape matching for intraoperative image guidance. Med Phys 41(11):111901. doi:10.1118/1.4896021 Thompson S, Totz J, Song Y, Johnsen S, Stoyanov D, Ourselin S, Gurusamy K, Schneider C, Davidson B, Hawkes D, Clarkson MJ (2015) Accuracy validation of an image guided laparoscopy system for liver resection. In: SPIE, vol 9415, pp 941, 509–941, 509–12. doi:10.1117/12.2080974 Totz J, Thompson S, Stoyanov D, Gurusamy K, Davidson B, Hawkes DJ, Clarkson MJ (2014) Fast semi-dense surface reconstruction from stereoscopic video in laparoscopic surgery. IPCAI 8498:206–215. doi:10.1007/978-3-319-07521-1_22 Wang M, Song Z (2013) Optimal number and distribution of points selected on the vertebra for surface matching in CT-based spinal navigation. Comput Aided Surg 18(3–4):93–100. doi:10.3109/10929088.2012.761728 Wang M, Song Z (2016) How does adding anatomical landmarks as fiducial points in the point-matching registration of neuronavigation influence registration accuracy? Comput Assist Surg 21(1):39–45. doi:10.1080/24699322.2016.1180429