Integration of biogas production into organic arable farming systems: crop yield response and economic effects
Tóm tắt
There are several important differences between organic and conventional biogas production. One difference concerns the biomass production system (e.g., legume-grass instead of maize), and another difference is the way in which biogas plants are integrated into nutrient cycles, which results in different effects on soil fertility, crop yields, and the environment. The focus of this study is an analysis of the yield response and economic impact of biogas plant integration into an organic arable farming system. We compare two organic farming systems: the reference system (an arable farming system without biogas production) and the biogas system (an arable farming system with biogas production). Both farming systems underwent the same crop rotation, and the cash crops produced in the biogas system were sold identically to those in the reference system. In the reference system, the grass–legume mixture of the green fallow was mulched and left as green manure on the fields. In the biogas system, the grass–legume mixture was used for biogas production; therefore, electricity, heat, and the biogas slurry for fertilization of the cash crops were produced. The comparisons are based on a long-term field experiment and additional modeling data. This research approach was chosen to achieve reliable results on the basis of measured yield effects under comparable site and management conditions. Within the investigated period (2010–2014), the cereal yields of the biogas system were significantly (27–47%) higher than those of the reference system (arable farming). Case studies and model calculations on the basis of the experimental data showed higher entrepreneurial profits from the biogas systems as a result of the yield effects. The entrepreneurial profit of the arable farming in the biogas system was approximately 300 € ha−1 higher than that of the reference system. The higher revenues from the cash crops also compensated for the financial losses induced by the biogas plants. The dimensions of a biogas plant are important for improving the overall profit of a farm; the size must be adapted to the on-site supply of substrates and the need for biogas slurry. This study shows that suitable organic biogas production leads to synergistic effects between bioenergy and food production. The integration of a biogas plant into an organic farming system can ensure energy supply while increasing food output.
Tài liệu tham khảo
Amigun B, Musango JK, Stafford W (2011) Biofuels and sustainability in Africa. Renew Sust Energ Rev 15:1360–1372
Anspach V (2010) Status quo, Perspektiven und wirtschaftliche Potenziale der Biogaserzeugung auf landwirtschaftlichen Betrieben im ökologischen Landbau. Universität Kassel, Dissertation
Blumenstein B, Möller D, Hoffmann F, Weddige U, Jaensch V, Hartmann K (2015a) Ökonomische Analyse. In: Fachagentur Nachwachsende Rohstoffe e.V. (ed) Biogasanlagen im Ökolandbau - Schlussbericht, Gülzow, pp 122–168
Blumenstein B, Siegmeier T, Bruckhaus C, Anspach V, Möller D (2015b) Integrated bioenergy and food production—a German survey on structure and developments of anaerobic digestion in organic farming systems. Sustainability 7:10709–10732
DLG (Deutsche Landwirtschafts-Gesellschaft e.V.) (2011) Die neue Betriebszweigabrechnung. DLG-Verlag, Frankfurt
EEG (2014) Act on granting priority to renewable energy sources (Renewable Energy Sources Act - EEG). Amendmend 2014, Federal Ministry for the Environment, Nature Conservation, Building and Nuclear Safety, Berlin, Germany
El-Sayed Fouda S (2011) Nitrogen availability of biogas residues. Dissertation, Technical University of Munich
European Union (EU) (2007) EU-organic-basic regulation. Regulation No. 837/2007
Frøseth RB, Bakken AK, Bleken MA, Riley H, Thorup-Kristensen K, Hansen S (2012) Improving N efficiency in barley through green manure management and biogas slurry. In: Richards KG, Fenton O, Watson CJ (eds) Proceedings of the 17th Nitrogen Workshop—innovations for sustainable use of nitrogen resources. The Irish Agriculture Food and Development Authority - Teagasc, Norway, pp 124–125
Heuwinkel H, Gutser R, Schmidhalter U (2005) Auswirkung einer Mulch- statt Schnittnutzung von Kleegras auf die N-Flüsse in einer Fruchtfolge. In: Bayerische Landesanstalt für Landwirtschaft (ed) Tagungsband zum Ökolandbautag am 16.02.2005 in Weihenstephan - Forschung für den Ökologischen Landbau in Bayern, Freising, pp 71–79
Hülsbergen KJ (2007) Biogaserzeugung im ökologischen Landbau. In: Kuratorium für Technik und Bauwesen in der Landwirtschaft (ed) Biogaserzeugung im ökologischen Landbau, KTBL-Heft 65, Darmstadt, pp 7–9
Hülsbergen KJ, Feil B, Biermann S, Rathke GW, Kalk WD, Diepenbrock W (2001) A method of energy balancing in crop production and its application in a long-term fertilizer trial. Agric Ecosyst Environ 86:303–321
Kravchenko AN, Snapp SS, Robertson GP (2017) Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc Natl Acad Sci 114:926–931
KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft) (2014) Biogasrechner. http://daten.ktbl.de/biogas/startseite. Accessed 26 Jun 2015
KTBL (Kuratorium für Technik und Bauwesen in der Landwirtschaft) (2016) Feldarbeitsrechner. http://daten.ktbl.de/feldarbeit/entry.html. Accessed 26 May 2016
Küstermann B, Christen O, Hülsbergen KJ (2010) Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management. Agric Ecosyst Environ 135:70–80
Küstermann B, Munch CH, Hülsbergen KJ (2013) Effects of soil tillage and fertilization on resource efficiency and greenhouse gas emissions in a long-term field experiment in southern Germany. Eur J Agron 49:61–73
LEOPOLDINA (German National Academy of Sciences) (2012) Bioenergy—chances and limits. Leopoldina, Halle, pp 9–37
Levin K, Schießl A, Kimmelmann S, Reents HJ, Hülsbergen KJ (2015) Effekte von Energiepflanzen-Fruchtfolgen und Gärrestdüngung auf den Weizenertrag. In Häring AM, Hörning B, Hoffmann-Bahnsen R et al. (eds) Tagungsband 13. Wissenschaftstagung Ökologischer Landbau, Verlag Dr. Köster, Berlin, pp 75–78
LfL (Bayerische Landesanstalt für Landwirtschaft) (2014) Internet Deckungsbeitragsrechner https://www.stmelf.bayern.de. Accessed 26 May 2016
Lin HC, Huber J, Gerl G, Hülsbergen KJ (2016) Nitrogen balances and nitrogen-use efficiency of different organic and conventional farming systems. Nutr Cycl Agroecosyst 105:1–23
Lin HC, Huber J, Gerl G, Hülsbergen KJ (2017) Effects of changing farm management and farm structure on energy balance and energy-use efficiency—a case study of organic and conventional farming systems in southern Germany. Eur J Agron 82:242–253
Lin HC, Hülsbergen KJ (2017) A new method for analyzing agricultural land-use efficiency, and its application in organic and conventional farming systems in southern German. Eur J Agron 83:15–27
Loges R, Ingwersen K, Kaske A, Taube F (2000) Methodological aspects of determining nitrogen fixation of different forage legumes. In: Alföldi T, Lockeretz W (eds) Proceedings 13th International IFOAM Scientific Conferenc, IFOAM 2000 - The World Grows Organic, vdf Hochschulverlag AG, Zürich, p 92
Michel J, Weiske A, Kaltschmitt M (2006) Ökologische und ökonomische Bilanzierung. In Möller K, Leithold G, Michel J et al. (eds) Auswirkung der Fermentation biogener Rückstände in Biogasanlagen auf Flächenproduktivität und Umweltverträglichkeit im Ökologischen Landbau, Endbericht DBU – AZ 15074, pp 241–374
Möller K, Schulz R, Müller T (2011) Effects of setup of centralized biogas plants on crop acreage and balances of nutrients and soil humus. Nutr Cycl Agroecosyst 89:303–312
Möller K, Stinner W, Deuker A, Leithold G (2008) Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr Cycl Agroecosyst 82:209–232
Möller K, Stinner W, Leithold G (2006) Biogas im ökologisch wirtschaftenden Pflanzenbau ohne Viehhaltung. In Möller K, Leithold G, Michel J et al. (eds) Auswirkung der Fermentation biogener Rückstände in Biogasanlagen auf Flächenproduktivität und Umweltverträglichkeit im Ökologischen Landbau, Endbericht DBU – AZ 15074, pp 121–167
Naturland (2016) Naturland Richtlinien – Erzeugung, Stand 05/2016. https://www.naturland.de. Accessed 23 Dec 2016
Reents HJ, Kimmelmann S, Kainz M, Hülsbergen KJ (2011) Biogas-Fruchtfolge Viehhausen - Versuchsanlage sowie Ertrags- und Qualitätseffekte bei Winterweizen. In: Leithold G, Becker K, Brock C et al. (eds) Tagungsband 11. Wissenschaftstagung ÖkologischerLandbau, Verlag Dr. Köster, Berlin, pp 76–80
Righaleto R, Spracklen DV (2007) Carbon mitigation by biofuels or by saving and restoring forests. Science 317:902
Siegmeier T, Blumenstein B, Möller D (2013) Biogas und Ökologische Landwirtschaft: Strukturen, Substrate, Wirtschaftlichkeit - Ergebnisse des BioBiogas-Monitorings 2011. Universität Kassel, Witzenhausen
Stinner W, Möller K, Leithold G (2008) Effects of biogas digestion of clover/grass-leys, cover crops and crop residues on nitrogen cycle and crop yield in organic stockless farming systems. Eur J Agron 29:125–134
Tersbøl M, Malm L (2014) Interview survey with 40 farmers. In: Financial performance of organic biogas production. SUSTAINGAS Report D3.1., Aabyhøj, Denmark, pp 7–17
Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L, Pacala S, Reilly J, Searchinger T, Somerville C, Williams R (2009) Beneficial biofuels—the food, energy, and environment trilemma. Science 325:270–271
Tuomisto H, Hodge I, Riordan P, Macdonald D (2012) Comparing energy balances, greenhouse gas balances and biodiversity impacts of contrasting farming systems with alternative land uses. Agric Syst 108:42–49
Wellinger A, Baserga U, Edelmann W, Egger K, Seiler B (1991) Biogas Handbuch. Wirz-Verlag, Aarau, Switzerland