Integration of Large Deformation Finite Element and Multibody System Algorithms
Tóm tắt
Từ khóa
Tài liệu tham khảo
Belytschko, Nonlinear Finite Elements for Continua and Structures
Zienkiewicz, The Finite Element Method, 3rd ed.
Zienkiewicz, Solid Mechanics, 5th ed.
Tseng, A Gluing Algorithm for Network-Distributed Dynamics Simulation, Multibody Syst. Dyn., 6, 377, 10.1023/A:1012279120194
Wang, A Gluing Algorithm for Distributed Simulation of Multibody Systems, Nonlinear Dyn., 34, 159, 10.1023/B:NODY.0000014558.70434.b0
Bauchau, Computational Schemes for Flexible, Nonlinear Multi-Body Systems, Multibody Syst. Dyn., 2, 169, 10.1023/A:1009710818135
Géradin, Flexible Multibody Dynamics: A Finite Element Approach
Shabana, Finite Element Incremental Approach and Exact Rigid Body Inertia, ASME J. Mech. Des., 118, 171, 10.1115/1.2826866
Bayo, A Modified Lagrangian Formulation for the Dynamic Analysis of Constrained Mechanical Systems, Comput. Methods Appl. Mech. Eng., 71, 183, 10.1016/0045-7825(88)90085-0
Bayo, Augmented Lagrangian and Mass-Orthogonal Projection Methods for Constrained Multibody Dynamics, Nonlinear Dyn., 9, 113, 10.1007/BF01833296
Simo, On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Parts I and II, ASME J. Appl. Mech., 53, 849, 10.1115/1.3171870
Wehage, R. A. , 1980, “Generalized Coordinate Partitioning in Dynamic Analysis of Mechanical Systems,” Ph.D. thesis, University of Iowa, Iowa.
Wehage, Generalized Coordinate Partitioning for Dimension Reduction in Analysis of Constrained Dynamic Systems, ASME J. Mech. Des., 104, 247, 10.1115/1.3256318
Shabana, Dynamics of Multibody Systems, 3rd ed.
Agrawal, Dynamic Analysis of Multi-Body Systems Using Component Modes, Comput. Struct., 21, 1303, 10.1016/0045-7949(85)90184-1
Farhat, A Parallel Active Column Equation Solver, Comput. Struct., 28, 289, 10.1016/0045-7949(88)90050-8
Farhat, Implicit Parallel Processing in Structural Mechanics, Comput. Mech. Adv., 2, 1, 10.1007/BF02519033
Farhat, A Method of Finite Element Tearing and Interconnecting and its Parallel Solution Algorithm, Int. J. Numer. Methods Eng., 32, 1205, 10.1002/nme.1620320604
Modak, Iterative Group Implicit Algorithm for Parallel Transient Finite Element Analysis, Int. J. Numer. Methods Eng., 47, 869, 10.1002/(SICI)1097-0207(20000210)47:4<869::AID-NME803>3.3.CO;2-7
Kim, A Subsystem Synthesis Method for an Efficient Vehicle Multibody Dynamics, Multibody Syst. Dyn., 7, 189, 10.1023/A:1014457111573
Anderson, Highly Parallelizable Low-Order Dynamics Simulation Algorithm for Multi-Rigid-Body Systems, J. Guid. Control Dyn., 23, 355, 10.2514/2.4531
Kübler, Modular Simulation in Multibody System Dynamics, Multibody Syst. Dyn., 4, 107, 10.1023/A:1009810318420
Tseng, Efficient Numerical Solution of Constrained Multibody Dynamics Systems, Comput. Methods Appl. Mech. Eng., 192, 439, 10.1016/S0045-7825(02)00521-2
Spencer, Continuum Mechanics
Naghdi, The Theory of Shells and Plates, Handbuch der Physik, 425
Cesnik, Cross-Sectional Analysis of Composite Beams Including Large Initial Twist and Curvature Effects, AIAA J., 34, 1913, 10.2514/3.13325
Stolarski, A Review of Shell Finite Elements and Corotational Theories, Comput. Mech. Adv., 2, 125
Kratzig, ‘Best’ Transverse Shearing and Stretching Shell Theory for Nonlinear Finite Element Simulations, Comput. Methods Appl. Mech. Eng., 103, 135, 10.1016/0045-7825(93)90043-W
Goldenweizer, Theory of Thin Elastic Shells
Libai, The Nonlinear Theory of Elastic Shells, 2nd ed.
Bathe, Finite Element Procedures
Nikravesh, Euler Parameters in Computational Dynamics and Kinematics. Part I and Part II, ASME J. Mech., Transm., Autom. Des., 107, 358, 10.1115/1.3260722
García de Jalón, Dynamic Analysis of Three-Dimensional Mechanisms in “Natural” Coordinates, ASME J. Mech., Transm., Autom. Des., 109, 460, 10.1115/1.3258818
Betsch, Constrained Integration of Rigid Body Dynamics, Comput. Methods Appl. Mech. Eng., 191, 467, 10.1016/S0045-7825(01)00283-3
Cardona, A Beam Finite Element Non-Linear Theory With Finite Rotation, Int. J. Numer. Methods Eng., 26, 2403, 10.1002/nme.1620261105
Betsch, On the Parametrization of Finite Rotations in Computational Mechanics. A Classification of Concepts With Application to Smooth Shells, Comput. Methods Appl. Mech. Eng., 155, 273, 10.1016/S0045-7825(97)00158-8
Kurdila, Role of Maggi’s Equations in Computational Methods for Constrained Multibody Systems, J. Guid. Control Dyn., 13, 113, 10.2514/3.20524
Unda, A Comparative Study on Some Different Formulations of the Dynamics Equations of Constrained Mechanical Systems, ASME J. Mech., Transm., Autom. Des., 109, 466, 10.1115/1.3258819
Hilber, Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics, Earthquake Eng. Struct. Dyn., 5, 282, 10.1002/eqe.4290050306
Chung, A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method, ASME J. Appl. Mech., 60, 371, 10.1115/1.2900803
Cardona, Time Integration of the Equations of Motion in Mechanism Analysis, Comput. Struct., 33, 801, 10.1016/0045-7949(89)90255-1
Farhat, Implicit Time Integration of a Class of Constrained Hybrid Formulations—Part I: Spectral Stability Theory, Comput. Methods Appl. Mech. Eng., 125, 71, 10.1016/0045-7825(95)00783-W
Hulbert, Computational Structural Dynamics, Encyclopedia of Computational Mechanics, 169
Bauchau, Numerical Integration of Nonlinear Elastic Multi-Body Systems, Int. J. Numer. Methods Eng., 38, 2727, 10.1002/nme.1620381605
Bottasso, Energy Preserving∕Decaying Schemes for Non-Linear Beam Dynamics Using the Helicoidal Approximation, Comput. Methods Appl. Mech. Eng., 143, 393, 10.1016/S0045-7825(96)01161-9
Simo, A New Energy and Momentum Conserving Algorithm for the Nonlinear Dynamics of Shells, Int. J. Numer. Methods Eng., 37, 2527, 10.1002/nme.1620371503
Bauchau, On the Modeling of Shells in Multibody Dynamics, Multibody Syst. Dyn., 8, 459, 10.1023/A:1021109015553
Bottasso, Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms—Part I: Formulation, Comput. Methods Appl. Mech. Eng., 190, 3669, 10.1016/S0045-7825(00)00286-3
Bottasso, Integration of Elastic Multibody Systems by Invariant Conserving∕Dissipating Algorithms—Part II: Numerical Schemes and Applications, Comput. Methods Appl. Mech. Eng., 190, 3701, 10.1016/S0045-7825(00)00285-1
Bauchau, Robust Integration Schemes for Flexible Multibody Systems, Comput. Methods Appl. Mech. Eng., 192, 395, 10.1016/S0045-7825(02)00519-4
Cardona, Modeling of a Hydraulic Actuator in Flexible Machine Dynamics Simulation, Mech. Mach. Theory, 25, 193, 10.1016/0094-114X(90)90121-Y
Cardona, Rigid and Flexible Joint Modelling in Multi-Body Dynamics Using Finite Elements, Comput. Methods Appl. Mech. Eng., 89, 395, 10.1016/0045-7825(91)90050-G
Bauchau, Modeling of Joints With Clearance in Flexible Multibody Systems, Int. J. Solids Struct., 39, 41, 10.1016/S0020-7683(01)00186-X
Cardona, A Superelement Formulation for Mechanism Analysis, Comput. Methods Appl. Mech. Eng., 100, 1, 10.1016/0045-7825(92)90112-W
Bauchau, Analysis of Nonlinear Multi-Body Systems With Elastic Couplings, Multibody Syst. Dyn., 3, 168
Bauchau, On the Modeling of Friction and Rolling in Flexible Multi-Body Systems, Multibody Syst. Dyn., 3, 209, 10.1023/A:1009883931415
Dmitrochenko, Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation, Multibody Syst. Dyn., 10, 17, 10.1023/A:1024553708730
Garcia-Vallejo, Describing Rigid-Flexible Multibody Systems Using Absolute Coordinates, Nonlinear Dyn., 34, 75, 10.1023/B:NODY.0000014553.98731.8d
Garcia-Vallejo, An Internal Damping Model for the Absolute Nodal Coordinate Formulation, Nonlinear Dyn., 42, 347, 10.1007/s11071-005-6445-1
Gerstmayr, Analysis of Thin Beams and Cables Using the Absolute Nodal Coordinate Formulation, Nonlinear Dyn., 45, 109, 10.1007/s11071-006-1856-1
Mikkola, Development of Elastic Forces for a Large Deformation Plate Element Based on the Absolute Nodal Coordinate Formulation, ASME J. Comput. Nonlinear Dyn., 1, 103, 10.1115/1.1961870
Schwab, Comparison of Three-Dimensional Beam Elements for Dynamic Analysis: Finite Element Method and Absolute Nodal Coordinate Formulation, Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computer and Information in Engineering Conference, 10.1115/DETC2005-85104
Sopanen, Description of Elastic Forces in Absolute Nodal Coordinate Formulation, Nonlinear Dyn., 34, 53, 10.1023/B:NODY.0000014552.68786.bc
Takahashi, Study on Elastic Forces of the Absolute Nodal Coordinate Formulation for Deformable Beams, Proceedings of ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference, 10.1115/DETC99/VIB-8203
Von Dombrowski, Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates, Multibody Syst. Dyn., 8, 409, 10.1023/A:1021158911536
Yoo, Large Deflection Analysis of a Thin Plate: Computer Simulation and Experiment, Multibody Syst. Dyn., 11, 185, 10.1023/B:MUBO.0000025415.73019.bb
Shabana, A Computer Implementation of the Absolute Nodal Coordinate Formulation for Flexible Multibody Dynamics, Nonlinear Dyn., 16, 293, 10.1023/A:1008072517368
Sugiyama, A Non-Incremental Nonlinear Finite Element Solution for Cable Problems, ASME J. Mech. Des., 125, 746, 10.1115/1.1631569
Romero, A Study of Nonlinear Rod Models for Flexible Multibody Dynamics, Proceedings of the Seventh World Congress on Computational Mechanics