Integrating Omics and CRISPR Technology for Identification and Verification of Genomic Safe Harbor Loci in the Chicken Genome

Springer Science and Business Media LLC - Tập 25 - Trang 1-20 - 2023
Nima Dehdilani1, Lena Goshayeshi1,2, Sara Yousefi Taemeh1,2, Ahmad Reza Bahrami3,4, Sylvie Rival Gervier5, Bertrand Pain5, Hesam Dehghani1,2,6
1Stem Cell Biology and Regenerative Medicine Research Group, Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
2Division of Biotechnology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
3Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
4Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
5Stem Cell and Brain Research Institute, University of Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Bron, France
6Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran

Tóm tắt

One of the most prominent questions in the field of transgenesis is ‘Where in the genome to integrate a transgene?’. Escape from epigenetic silencing and promoter shutdown of the transgene needs reliable genomic safe harbor (GSH) loci. Advances in genome engineering technologies combined with multi-omics bioinformatics data have enabled rational evaluation of GSH loci in the host genome. Currently, no validated GSH loci have been evaluated in the chicken genome. Here, we analyzed and experimentally examined two GSH loci in the genome of chicken cells. To this end, putative GSH loci including chicken HIPP-like (cHIPP; between DRG1 and EIF4ENIF1 genes) and chicken ROSA-like (cROSA; upstream of the THUMPD3 gene) were predicted using multi-omics bioinformatics data. Then, the durable expression of the transgene was validated by experimental characterization of continuously-cultured isogenous cell clones harboring DsRed2-ΔCMV-EGFP cassette in the predicted loci. The weakened form of the CMV promoter (ΔCMV) allowed the precise evaluation of GSH loci in a locus-dependent manner compared to the full-length CMV promoter. cHIPP and cROSA loci introduced in this study can be reliably exploited for consistent bio-manufacturing of recombinant proteins in the genetically-engineered chickens. Also, results showed that the genomic context dictates the expression of transgene controlled by ΔCMV in GSH loci.

Tài liệu tham khảo

Oleg E. Tolmachov, Subkhankulova T, Tolmachov T. Silencing of Transgene Expression: A Gene Therapy Perspective. Gene Ther - Tools Potential Appl. 2013. https://doi.org/10.5772/53379. Dehdilani N, Yousefi Taemeh S, Goshayeshi L, Dehghani H. Genetically Engineered Birds; pre-CRISPR and CRISPR era†. Biol Reprod. 2022;106(1):24–46. https://doi.org/10.1093/biolre/ioab196. Aznauryan E, Yermanos A, Kinzina E, et al. Discovery and Validation of Human Genomic Safe Harbor Sites for Gene and Cell Therapies. Cell Rep Methods. 2022;2(1):100154. https://doi.org/10.1016/j.crmeth.2021.100154. Lombardo A, Cesana D, Genovese P, et al. Site-Specific Integration and Tailoring of Cassette Design for Sustainable Gene Transfer. Nat Methods. 2011;8(10):861–9. https://doi.org/10.1038/nmeth.1674. Tasic B, Hippenmeyer S, Wang C, et al. Site-Specific Integrase-Mediated Transgenesis in Mice via Pronuclear Injection. Proc Natl Acad Sci U S A. 2011;108(19):7902–7. https://doi.org/10.1073/pnas.1019507108. Ghahfarokhi MK, Dormiani K, Mohammadi A, Jafarpour F, Nasr-Esfahani MH. Blastocyst Formation Rate and Transgene Expression are Associated with Gene Insertion into Safe and Non-Safe Harbors in the Cattle Genome. Sci Rep. 2017;7(1):15432. https://doi.org/10.1038/s41598-017-15648-3. Pellenz S, Phelps M, Tang W, et al. New Human Chromosomal Sites with “Safe Harbor” Potential for Targeted Transgene Insertion. Hum Gene Ther. 2019;30(7):814–28. https://doi.org/10.1089/hum.2018.169. Shrestha D, Bag A, Wu R, et al. Genomics and Epigenetics Guided Identification of Tissue-Specific Genomic Safe Harbors. Genome Biol. 2022;23(1):199. https://doi.org/10.1186/s13059-022-02770-3. Gu B, Posfai E, Rossant J. Efficient Generation of Targeted Large Insertions by Microinjection into Two-Cell-Stage Mouse Embryos. Nat Biotechnol. 2018;36(7):632–7. https://doi.org/10.1038/nbt.4166. Shin S, Kim SH, Shin SW, et al. Comprehensive Analysis of Genomic Safe Harbors as Target Sites for Stable Expression of the Heterologous Gene in HEK293 Cells. ACS Synth Biol. 2020;9(6):1263–9. https://doi.org/10.1021/acssynbio.0c00097. Lee JS, Kildegaard HF, Lewis NE, Lee GM. Mitigating Clonal Variation in Recombinant Mammalian Cell Lines. Trends Biotechnol. 2019;37(9):931–42. https://doi.org/10.1016/j.tibtech.2019.02.007. Irion S, Luche H, Gadue P, Fehling HJ, Kennedy M, Keller G. Identification and Targeting of the ROSA26 Locus in Human Embryonic Stem Cells. Nat Biotechnol. 2007;25(12):1477–82. https://doi.org/10.1038/nbt1362. Kimura Y, Shofuda T, Higuchi Y, et al. Human Genomic Safe Harbors and the Suicide Gene-Based Safeguard System for iPSC-Based Cell Therapy. Stem Cells Transl Med. 2019;8(7):627–38. https://doi.org/10.1002/sctm.18-0039. Ma L, Wang Y, Wang H, et al. Screen and Verification for Transgene Integration Sites in Pigs. 2018:1–11. https://doi.org/10.1038/s41598-018-24481-1. Chen Y, Mao S, Liu B, et al. Novel Mosaic Mice with Diverse Applications. bioRxiv. 2020:2020.03.21.001388. https://doi.org/10.1101/2020.03.21.001388. Kobayashi T, Kato-Itoh M, Yamaguchi T, et al. Identification of Rat Rosa26 Locus Enables Generation of Knock-in Rat Lines Ubiquitously Expressing tdTomato. Stem Cells Dev. 2012;21(16):2981–6. https://doi.org/10.1089/scd.2012.0065. Tasic B, Miyamichi K, Hippenmeyer S, et al. Extensions of MADM (Mosaic Analysis with Double Markers) in Mice. PLoS one. 2012;7(3):e33332. https://doi.org/10.1371/journal.pone.0033332. Yang D, Song J, Zhang J, et al. Identification and Characterization of Rabbit ROSA26 for Gene Knock-in and Stable Reporter Gene Expression. Sci Rep. 2016;6(1):25161. https://doi.org/10.1038/srep25161. Ruan J, Li H, Xu K, Wu T, Wei J, Zhou R. Highly Efficient CRISPR / Cas9- Mediated Transgene Knockin at the H11 Locus in Pigs. Nat Publ Gr. 2015:1–10. https://doi.org/10.1038/srep14253. Wang M, Sun Z, Zou Z, et al. Efficient Targeted Integration Into the Bovine Rosa26 Locus Using TALENs. Sci Rep. 2018;8(1):10385. https://doi.org/10.1038/s41598-018-28502-x. Wu M, Wei C, Lian Z, et al. Rosa26 -Targeted Sheep Gene Knock-in via CRISPR-Cas9 System. Nat Publ Gr. 2016:1–7. https://doi.org/10.1038/srep24360. Li X, Yang Y, Bu L, et al. Rosa26-Targeted Swine Models for Stable Gene Over-Expression and Cre-Mediated Lineage Tracing. Cell Res. 2014;24(4):501–4. https://doi.org/10.1038/cr.2014.15. Zhu F, Gamboa M, Farruggio AP, et al. DICE, an Efficient System for Iterative Genomic Editing in Human Pluripotent Stem Cells. Nucleic Acids Res. 2014;42(5):e34. https://doi.org/10.1093/nar/gkt1290. Chi X, Zheng Q, Jiang R, Chen-Tsai RY, Kong LJ. A System for Site-Specific Integration of Transgenes in Mammalian Cells. PLoS one. 2019;14(7):e0219842. https://doi.org/10.1371/journal.pone.0219842. Gaidukov L, Wroblewska L, Teague B, et al. A Multi-Landing Pad DNA Integration Platform for Mammalian Cell Engineering. Nucleic Acids Res. 2018;46(8):4072–86. https://doi.org/10.1093/nar/gky216. Perez-Pinera P, Ousterout DG, Brown MT, Gersbach CA. Gene Targeting to the ROSA26 Locus Directed by Engineered Zinc Finger Nucleases. Nucleic Acids Res. 2012;40(8):3741–52. https://doi.org/10.1093/nar/gkr1214. Hockemeyer D, Soldner F, Beard C, et al. Efficient Targeting of Expressed and Silent Genes in Human ESCs and iPSCs Using Zinc-Finger Nucleases. Nat Biotechnol. 2009;27(9):851–7. https://doi.org/10.1038/nbt.1562. Remy S, Tesson L, Menoret S, et al. Efficient Gene Targeting by Homology-Directed Repair in Rat Zygotes Using TALE Nucleases. Genome Res. 2014;24(8):1371–83. https://doi.org/10.1101/gr.171538.113. Rizzi N, Rebecchi M, Levandis G, Ciana P, Maggi A. Identification of Novel Loci for the Generation of Reporter Mice. Nucleic Acids Res. 2017;45(6):e37. https://doi.org/10.1093/nar/gkw1142. Eyquem J, Poirot L, Galetto R, Scharenberg AM, Smith J. Characterization of Three Loci for Homologous Gene Targeting and Transgene Expression. Biotechnol Bioeng. 2013;110(8):2225–35. https://doi.org/10.1002/bit.24892. Liu T, Hu Y, Guo S, et al. Identification and Characterization of MYH9 Locus for High Efficient Gene Knock-in and Stable Expression in Mouse Embryonic Stem Cells. PLoS One. 2018;13(2):e0192641. https://doi.org/10.1371/journal.pone.0192641. Johari YB, Scarrott JM, Pohle TH, et al. Engineering of the CMV Promoter for Controlled Expression of Recombinant Genes in HEK293 Cells. Biotechnol J. 2022;17(8):e2200062. https://doi.org/10.1002/biot.202200062. DeKelver RC, Choi VM, Moehle EA, et al. Functional Genomics, Proteomics, and Regulatory DNA Analysis in Isogenic Settings Using Zinc Finger Nuclease-Driven Transgenesis Into a Safe Harbor Locus in the Human Genome. Genome Res. 2010;20(8):1133–42. https://doi.org/10.1101/gr.106773.110. Kong Q, Hai T, Ma J, et al. Rosa26 Locus Supports Tissue-Specific Promoter Driving Transgene Expression Specifically in Pig. PLoS one. 2014;9(9):e107945. https://doi.org/10.1371/journal.pone.0107945. Li G, Zhang X, Wang H, et al. CRISPR/Cas9-Mediated Integration of Large Transgene into Pig CEP112 Locus. G3 (Bethesda). 2020;10(2):467–73. https://doi.org/10.1534/g3.119.400810. Stanford WL, Cohn JB, Cordes SP, Lunenfeld S. Gene-Trap Mutagenesis: Past, Present and Beyond. Nat Rev Genet. 2001;2:756–68. Papapetrou EP, Lee G, Malani N, et al. Genomic Safe Harbors Permit High β -Globin Transgene Expression in Thalassemia Induced Pluripotent Stem Cells. Nat Biotechnol. 2011;29(1):73–8. https://doi.org/10.1038/nbt.1717. Miyata Y, Tokumoto S, Arai T, et al. Identification of Genomic Safe Harbors in the Anhydrobiotic Cell Line, Pv11. Genes (Basel). 2022;13(3):406. https://doi.org/10.3390/genes13030406. Lee ES, Moon S, Abu-Bonsrah KD, et al. Programmable Nuclease-Based Integration into Novel Extragenic Genomic Safe Harbor Identified from Korean Population-Based CNV Analysis. Mol Ther Oncolytics. 2019;14:253–65. https://doi.org/10.1016/j.omto.2019.07.001. Sadelain M, Papapetrou EP, Bushman FD. Safe Harbours for the Integration of New DNA in the Human Genome. Nat Rev Cancer. 2011;12(1):51–8. https://doi.org/10.1038/nrc3179. Hilliard W, Lee KH. Systematic Identification of Safe Harbor Regions in the CHO Genome Through a Comprehensive Epigenome Analysis. Biotechnol Bioeng. 2021;118(2):659–75. https://doi.org/10.1002/bit.27599. Park CY, Sung JJ, Cho SR, Kim J, Kim DW. Universal Correction of Blood Coagulation Factor VIII in Patient-Derived Induced Pluripotent Stem Cells Using CRISPR/Cas9. Stem Cell Rep. 2019;12(6):1242–9. https://doi.org/10.1016/j.stemcr.2019.04.016. Li YS, Meng RR, Chen X, et al. Generation of H11-albumin-rtTA Transgenic Mice: A Tool for Inducible Gene Expression in the Liver. G3 (Bethesda). 2019;9:591. https://doi.org/10.1534/g3.118.200963. Waters PD, Patel HR, Ruiz-Herrera A, et al. Microchromosomes are Building Blocks of Bird, Reptile, and Mammal Chromosomes. Proc Natl Acad Sci. 2021;118(45):e2112494118. https://doi.org/10.1073/pnas.2112494118. Ordovás L, Boon R, Pistoni M, et al. Efficient Recombinase-Mediated Cassette Exchange in hPSCs to Study the Hepatocyte Lineage Reveals AAVS1 Locus-Mediated Transgene Inhibition. Stem Cell Rep. 2015;5(5):918–31. https://doi.org/10.1016/j.stemcr.2015.09.004. Strathdee D, Ibbotson H, Grant SGN. Expression of Transgenes Targeted to the Gt(ROSA)26Sor Locus is Orientation Dependent. PLoS one. 2006;1(1):e4. https://doi.org/10.1371/journal.pone.0000004. Nyabi O, Naessens M, Haigh K, et al. Efficient Mouse Transgenesis Using Gateway-compatible ROSA26 Locus Targeting Vectors and F1 Hybrid ES Cells. Nucleic Acids Res. 2009;37(7):e55. https://doi.org/10.1093/nar/gkp112. Fishman V, Battulin N, Nuriddinov M, et al. 3D organization of Chicken Genome Demonstrates Evolutionary Conservation of Topologically Associated Domains and Highlights Unique Architecture of Erythrocytes’ Chromatin. Nucleic Acids Res. 2019;47(2):648–65. https://doi.org/10.1093/nar/gky1103. Merkin J, Russell C, Chen P, Burge CB. Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues. Science. 2012;338(6114):1593–9. https://doi.org/10.1126/science.1228186. Barbosa-Morais NL, Irimia M, Pan Q, et al. The Evolutionary Landscape of Alternative Splicing in Vertebrate Species. Science. 2012;338(6114):1587–93. https://doi.org/10.1126/science.1230612. Engreitz JM, Haines JE, Perez EM, et al. Local Regulation of Gene Expression by lncRNA Promoters, Transcription and Splicing. Nature. 2016;539(7629):452–5. https://doi.org/10.1038/nature20149. Malik A, Gul A, Munir F, et al. Evaluating the Cleavage Efficacy of CRISPR-Cas9 sgRNAs Targeting Ineffective Regions of Arabidopsis Thaliana Genome. PeerJ. 2021;9:e11409. https://doi.org/10.7717/peerj.11409. Beeber D, Chain FJ. crispRdesignR: A Versatile Guide RNA Design Package in R for CRISPR/Cas9 Applications. J genomics. 2020;8:62–70. https://doi.org/10.7150/jgen.41196. Rao SSP, Huntley MH, Durand NC, et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell. 2014;159(7):1665–80. https://doi.org/10.1016/j.cell.2014.11.021. Hnisz D, Day DS, Young RA. Insulated Neighborhoods: Structural and Functional Units of Mammalian Gene Control. Cell. 2016;167(5):1188–200. https://doi.org/10.1016/j.cell.2016.10.024. Browning J, Rooney M, Hams E, et al. Highly Efficient CRISPR-Targeting of the Murine Hipp11 Intergenic Region Supports Inducible Human Transgene Expression. Mol Biol Rep. 2020;47(2):1491–8. https://doi.org/10.1007/s11033-019-05204-9. Grav LM, Sergeeva D, Lee JS, et al. Minimizing Clonal Variation during Mammalian Cell Line Engineering for Improved Systems Biology Data Generation. ACS Synth Biol. 2018;7(9):2148–59. https://doi.org/10.1021/acssynbio.8b00140. O’Brien SA, Lee K, Fu HY, et al. Single Copy Transgene Integration in a Transcriptionally Active Site for Recombinant Protein Synthesis. Biotechnol J. 2018;13(10):e1800226. https://doi.org/10.1002/biot.201800226. Ménoret S, De Cian A, Tesson L, et al. Homology-Directed Repair in Rodent Zygotes Using Cas9 and TALEN Engineered Proteins. Sci Rep. 2015;5:14410. https://doi.org/10.1038/srep14410. Brooks AR, Harkins RN, Wang P, Qian HS, Liu P, Rubanyi GM. Transcriptional Silencing is Associated with Extensive Methylation of the CMV Promoter Following Adenoviral Gene Delivery to Muscle. J Gene Med. 2004;6(4):395–404. https://doi.org/10.1002/jgm.516. Moritz B, Becker PB, Göpfert U. CMV Promoter Mutants with a Reduced Propensity to Productivity Loss in CHO Cells. Sci Rep. 2015;5:16952. https://doi.org/10.1038/srep16952. Boeger H, Griesenbeck J, Strattan JS, Kornberg RD. Nucleosomes Unfold Completely at a Transcriptionally Active Promoter. Mol Cell. 2003;11(6):1587–98. https://doi.org/10.1016/S1097-2765(03)00231-4. Klemm SL, Shipony Z, Greenleaf WJ. Chromatin Accessibility and the Regulatory Epigenome. Nat Rev Genet. 2019;20(4):207–20. https://doi.org/10.1038/s41576-018-0089-8. Bhagwan JR, Collins E, Mosqueira D, et al. Variable Expression and Silencing of CRISPR-Cas9 Targeted Transgenes Identifies the AAVS1 Locus as Not an Entirely Safe Harbour. F1000Research. 2019;8:1911. https://doi.org/10.12688/f1000research.19894.2. Mella-Alvarado V, Gautier A, Le Gac F, Lareyre JJ. Tissue and Cell-specific Transcriptional Activity of the Human Cytomegalovirus Immediate Early Gene Promoter (UL123) in Zebrafish. Gene Expr Patterns. 2013;13(3–4):91–103. https://doi.org/10.1016/j.gep.2013.01.003. Vasey DB, Lillico SG, Sang HM, King TJ, Whitelaw CBA. CMV Enhancer-Promoter is Preferentially Active in Exocrine Cells in Vivo. Transgenic Res. 2009;18(2):309–14. https://doi.org/10.1007/s11248-008-9235-y. Qin JY, Zhang L, Clift KL, et al. Systematic Comparison of Constitutive Promoters and the Doxycycline-Inducible Promoter. PLoS one. 2010;5(5):e10611. https://doi.org/10.1371/journal.pone.0010611. Xia W, Bringmann P, McClary J, et al. High Levels of Protein Expression Using Different Mammalian CMV Promoters in Several Cell Lines. Protein Expr Purif. 2006;45(1):115–24. https://doi.org/10.1016/j.pep.2005.07.008. Zweidler-Mckay PA, Grimes HL, Flubacher MM, Tsichlis PN. Gfi-1 Encodes a Nuclear Zinc Finger Protein that Binds DNA and Functions as a Transcriptional Repressor. Mol Cell Biol. 1996;16(8):4024–34. https://doi.org/10.1128/MCB.16.8.4024. Liu XF, Yan S, Abecassis M, Hummel M. Establishment of Murine Cytomegalovirus Latency in Vivo is Associated with Changes in Histone Modifications and Recruitment of Transcriptional Repressors to the Major Immediate-Early Promoter. J Virol. 2008;82(21):10922–31. https://doi.org/10.1128/JVI.00865-08. Liu R, Baillie J, Sissons JG, Sinclair JH. The Transcription Factor YY1 Binds to Negative Regulatory Elements in the Human Cytomegalovirus Major Immediate Early Enhancer/Promoter and Mediates Repression in Non-Permissive Cells. Nucleic Acids Res. 1994;22(13):2453–9. https://doi.org/10.1093/nar/22.13.2453. Kim M, O’Callaghan PM, Droms KA, James DC. A Mechanistic Understanding of Production Instability in CHO Cell Lines Expressing Recombinant Monoclonal Antibodies. Biotechnol Bioeng. 2011;108(10):2434–46. https://doi.org/10.1002/bit.23189. O’Callaghan PM, Racher AJ. Building a Cell Culture Process with Stable Foundations: Searching for Certainty in an Uncertain World. In: Al-Rubeai M, ed. Animal Cell Culture. Springer International Publishing, Springer, Cham; 2015:373-406. https://doi.org/10.1007/978-3-319-10320-4_12.