Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Phân tích tích hợp hồ sơ chuyển hóa và biểu hiện gen của việc tích tụ sắc tố trong cánh hoa Lonicera japonica trong quá trình chuyển đổi màu sắc
Tóm tắt
Thực vật có sự đa dạng đáng kể về màu sắc cánh hoa thông qua việc tổng hợp sinh học và tích lũy các sắc tố khác nhau. Để hiểu rõ hơn về cơ chế điều hòa sắc tố cánh hoa ở Lonicera japonica, chúng tôi đã sử dụng nhiều phương pháp để nghiên cứu sự thay đổi của carotenoid, anthocyanin, hormone nội sinh và động thái biểu hiện gen trong quá trình chuyển đổi màu sắc cánh hoa, tức là, cánh hoa nụ xanh (GB_Pe), cánh hoa trắng (WF_Pe) và cánh hoa vàng (YF_Pe). Phân tích metabolome cho thấy YF_Pe chứa hàm lượng carotenoid cao hơn nhiều so với GB_Pe và WF_Pe, với α-carotene, zeaxanthin, violaxanthin và γ-carotene được xác định là các hợp chất carotenoid chính trong YF_Pe. Phân tích transcriptome so sánh đã tiết lộ rằng các gen biểu hiện khác biệt chính (DEGs) liên quan đến tổng hợp carotenoid, chẳng hạn như phytoene synthase, phytoene desaturase và ζ-carotene desaturase, đã được điều chỉnh đáng kể lên trong YF_Pe. Các kết quả chỉ ra rằng nồng độ carotenoid tăng lên và các gen liên quan đến tổng hợp carotenoid chủ yếu thúc đẩy quá trình chuyển đổi màu sắc. Trong khi đó, hai anthocyanin (pelargonidin và cyanidin) đã tăng lên đáng kể trong YF_Pe, và mức độ biểu hiện của một gen anthocyanidin synthase đã được điều chỉnh đáng kể, gợi ý rằng anthocyanin có thể góp phần vào màu vàng rực rỡ trong YF_Pe. Hơn nữa, các phân tích về sự thay đổi nồng độ axit indoleacetic, zeatin riboside, axit gibberellic, brassinosteroid (BR), methyl jasmonate và axit abscisic (ABA) cho thấy rằng các quá trình chuyển màu được điều chỉnh bởi hormone nội sinh. Các DEGs liên quan đến đường dẫn tín hiệu auxin, cytokinin, gibberellin, BR, axit jasmonic và ABA đã được làm phong phú và liên kết với các chuyển đổi màu cánh hoa. Kết quả của chúng tôi cung cấp cái nhìn tổng quát về sự tích lũy sắc tố và các cơ chế điều hòa cơ bản liên quan đến quá trình chuyển đổi màu sắc cánh hoa trong quá trình phát triển hoa ở L. japonica.
Từ khóa
#Lonicera japonica #màu sắc cánh hoa #carotenoid #anthocyanin #hormone nội sinh #transcriptomeTài liệu tham khảo
Strauss SY, Whittall JB. Non-pollinator agents of selection on floral traits. In: Harder LD, Barrett SCH, editors. Ecology and Evolution of Flowers. Oxford: Oxford University Press; 2006. p. 120–38.
Meng Y, Wang Z, Wang Y, Wang C, Zhu B, Liu H, et al. The MYB activator WHITE PETAL1 associates with MtTT8 and MtWD40-1 to regulate carotenoid-derived flower pigmentation in Medicago truncatula. Plant Cell. 2019;31(11):2751–67.
Nisar N, Li L, Lu S, Khin NC, Pogson BJ. Carotenoid metabolism in plants. Mol Plant. 2015;8(1):68–82.
Sun T, Yuan H, Cao H, Yazdani M, Tadmor Y, Li L. Carotenoid metabolism in plants: the role of plastids. Mol Plant. 2018;11(1):58–74.
Grotewold E. The genetics and biochemistry of floral pigments. Annu Rev Plant Biol. 2006;57(1):761–80.
Zhao D, Tao J. Recent advances on the development and regulation of flower color in ornamental plants. Front Plant Sci. 2015;6:261.
Chiou C-Y, Pan H-A, Chuang Y-N, Yeh K-W. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta. 2010;232(4):937–48.
Wang Z, Shen Y, Yang X, Pan Q, Ma G, Bao M, et al. Overexpression of particular MADS-box transcription factors in heat-stressed plants induces chloroplast biogenesis in petals. Plant Cell Environ. 2019;42(5):1545–60.
Tanaka Y, Sasaki N, Ohmiya A. Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 2008;54(4):733–49.
Ferreyra MLF, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:222.
Hirschberg J. Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol. 2001;4(3):210–8.
Han Y, Wang X, Chen W, Dong M, Yuan W, Liu X, et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans. Tree Genet Genomes. 2014;10(2):329–38.
Moehs CP, Tian L, Osteryoung KW, Dellapenna D. Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol. 2001;45(3):281–93.
Dettmer K, Aronov PA, Hammock BD. Mass spectrometry-based metabolomics. Mass Spectrom Rev. 2007;26(1):51–78.
Bino RJ, Hall RD, Fiehn O, Kopka J, Saito K, Draper J, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 2004;9(9):418–25.
Deng C, Li S, Feng C, Hong Y, Huang H, Wang J, et al. Metabolite and gene expression analysis reveal the molecular mechanism for petal colour variation in six Centaurea cyanus cultivars. Plant Physiol Biochem. 2019;142:22–33.
Lou Q, Liu Y, Qi Y, Jiao S, Tian F, Jiang L, et al. Transcriptome sequencing and metabolite analysis reveals the role of delphinidin metabolism in flower colour in grape hyacinth. J Exp Bot. 2014;65(12):3157–64.
Duan H, Wang L, Cui G, Zhou X, Duan X, Yang H. Identification of the regulatory networks and hub genes controlling alfalfa floral pigmentation variation using RNA-sequencing analysis. BMC Plant Biol. 2020;20(1):110.
Yan K, Cui M, Zhao S, Chen X, Tang X. Salinity stress is beneficial to the accumulation of chlorogenic acids in honeysuckle (Lonicera japonica Thunb.). Front Plant Sci. 2016;7:1563.
He SQ, Hu QF, Yang GY. Research of honeysuckle. Yunnan Chem Technol. 2010;37(3):72–5 (In Chinese).
Wu J, Wang X, Liu Y, Du H, Shu Q, Su S, et al. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation. Sci Rep. 2016;6:19245.
Fu L, Li H, Li L, Yu H, Wang L. Reason of flower color change in Lonicera japonica. Scientia Silvae Sinicae. 2013;49(10):155–61 (In Chinese).
Li J, Lian X, Ye C, Wang L. Analysis of flower color variations at different developmental stages in two honeysuckle (Lonicera Japonica Thunb.) cultivars. HortScience. 2019;54(5):779–82.
Pu X, Li Z, Tian Y, Gao R, Hao L, Hu Y, et al. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration. New Phytol. 2020;227(3):930–43.
Liu Y, Lv J, Liu Z, Wang J, Yang B, Chen W, et al. Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.). Food Chem. 2020;306:125629.
Wang D, Zhang L, Huang X, Wang X, Yang R, Mao J, et al. Identification of nutritional components in black sesame determined by widely targeted metabolomics and traditional Chinese medicines. Molecules. 2018;23(5):1180.
Huang D, Yuan Y, Tang Z, Huang Y, Kang C, Deng X, et al. Retrotransposon promoter of Ruby1 controls both light-and cold-induced accumulation of anthocyanins in blood orange. Plant Cell Environ. 2019;42(11):3092–104.
Yang Y-M, Xu C-N, Wang B-M, Jia J-Z. Effects of plant growth regulators on secondary wall thickening of cotton fibres. Plant Growth Regul. 2001;35(3):233–7.
Zeng Y-H, Zahng Y-P, Xiang J, Wu H, Chen H-Z, Zhang Y-K, et al. Effects of chilling tolerance induced by spermidine pretreatment on antioxidative activity,endogenous hormones and ultrastructure of indica-japonica hybrid rice seedlings. J Integr Agric. 2016;15(2):295–308.
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, et al. WEGO: a web tool for plotting GO annotations. Nucleic Acids Res. 2006;34(suppl_2):W293–7.
Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
Storey JD, Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci. 2003;100(16):9440–5.
Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11(2):R14.
Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics. 2005;21(16):3448–9.
Shalygo N, Czarnecki O, Peter E, Grimm B. Expression of chlorophyll synthase is also involved in feedback-control of chlorophyll biosynthesis. Plant Mol Biol. 2009;71(4):425–36.
Tanaka A, Ito H, Tanaka R, Tanaka NK, Yoshida K, Okada K. Chlorophyll a oxygenase (CAO) is involved in chlorophyll b formation from chlorophyll a. Proc Natl Acad Sci. 1998;95(21):12719–23.
Kunugi M, Takabayashi A, Tanaka A. Evolutionary changes in chlorophyllide a oxygenase (CAO) structure contribute to the acquisition of a new light-harvesting complex in micromonas. J Biol Chem. 2013;288(27):19330–41.
Meguro M, Ito H, Takabayashi A, Tanaka R, Tanaka A. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis. Plant Cell. 2011;23(9):3442–53.
Ohmiya A, Hirashima M, Yagi M, Tanase K, Yamamizo C. Identification of genes associated with chlorophyll accumulation in flower petals. PLoS One. 2014;9(12):e113738.
Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM. Carotenoid biosynthesis during tomato fruit development (evidence for tissue-specific gene expression). Plant Physiol. 1994;105(1):405–13.
Moise AR, Al-Babili S, Wurtzel ET. Mechanistic aspects of carotenoid biosynthesis. Chem Rev. 2014;114(1):164–93.
Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY. Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J. 1999;20(4):401–12.
Ducreux LJM, Morris WL, Hedley PE, Shepherd T, Davies HV, Millam S, et al. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein. J Exp Bot. 2004;56(409):81–9.
Ruiz-Sola MA, Rodriguez-Concepcion M. Carotenoid biosynthesis in Arabidopsis: a colorful pathway. Arabidopsis Book. 2012;10(10):e0158.
Yuan H, Zhang J, Nageswaran D, Li L. Carotenoid metabolism and regulation in horticultural crops. Horticult Res. 2015;2(1):15036.
Yamagishi M, Kishimoto S, Nakayama M. Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breed. 2010;129(1):100–7.
Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K. Carotenoid cleavage Dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 2006;142(3):1193–201.
Zhang B, Liu C, Wang Y, Yao X, Liu K. Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species. New Phytol. 2015;206(4):1513–26.
Glick A. Synthesis and degradation of carotenoids in cut rose petals during vase life, and characterization of the effect of Methyljasmonate treatment on the processes. Jerusalem: Hebrew University of Jerusalem; 2009.
Diretto G, Jin X, Capell T, Zhu C, Gomez-Gomez L, Xu C. Differential accumulation of pelargonidin glycosides in petals at three different developmental stages of the orange-flowered gentian (Gentiana lutea L. var. aurantiaca). PLoS One. 2019;14(2):e0212062.
Yueqing L, Xingxue L, Xinquan C, Xiaotong S, Ruifang G, Song Y, et al. Dihydroflavonol 4-Reductase genes from Freesia hybrida play important and partially overlapping roles in the biosynthesis of flavonoids. Front Plant Sci. 2017;8:428.
Smith SD, Shunqi W, Rausher MD. Functional evolution of an anthocyanin pathway enzyme during a flower color transition. Mol Biol Evol. 30(3):602–12.
Maitre NCL, Pirie MD, Bellstedt DU. Floral color, anthocyanin synthesis gene expression and control in cape Erica species. Front Plant Sci. 2019;10:1565.
Su L, Diretto G, Purgatto E, Danoun S, Zouine M, Li Z, et al. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol. 2015;15(1):114.
Vidya Vardhini B, Rao SSR. Acceleration of ripening of tomato pericarp discs by brassinosteroids. Phytochemistry. 2002;61(7):843–7.
Liu L, Jia C, Zhang M, Chen D, Chen S, Guo R, et al. Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol J. 2014;12(1):105–15.
Liu L, Wei J, Zhang M, Zhang L, Li C, Wang Q. Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. J Exp Bot. 2012;63(16):5751–61.
Zhang M, Yuan B, Leng P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot. 2009;60(6):1579–88.
Gao S, Gao J, Zhu X, Song Y, Li Z, Ren G, et al. ABF2, ABF3, and ABF4 promote ABA-mediated chlorophyll degradation and leaf senescence by transcriptional activation of chlorophyll catabolic genes and senescence-associated genes in Arabidopsis. Mol Plant. 2016;9(9):1272–85.
Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, et al. AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J. 2010;61(4):672–85.
Fujita Y, Yoshida T, Yamaguchishinozaki K. Pivotal role of the AREB/ABF-SnRK2 pathway in ABRE-mediated transcription in response to osmotic stress in plants. Physiol Plant. 2013;147(1):15–27.
