Integral Geometry of Euler Equations

Nikolaï Nadirashvili1, Serge Vlăduţ1,2
1Aix Marseille Université, CNRS, Centrale Marseille, I2M UMR 7373, Marseille, France
2IITP RAS, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Springer, Berlin (1998)

Chae, D., Constantin, P.: Remarks on a Liouville-type theorem for Beltrami flows. Int. Math. Res. Not. 20, 10012–10016 (2015)

Enciso, A., Peralta-Salas, D.: Existence of knotted vortex tubes in steady Euler flows. Ann. Math. 175, 345–367 (2012)

Gonzalez, F., Helgason, S.: Invariant differential operators on Grassmann manifolds. Adv. Math. 60, 81–91 (1986)

John, F.: The ultrahyperbolic differential equation with four independent variables. Duke Math. J. 4(2), 300–322 (1938)

Nadirashvili, N.: Liouville theorem for Beltrami flow. Geom. Funct. Anal. 24, 916–921 (2014)

Nadirashvili, N., Sharafutdinov, V.A., Vlăduţ, S.: The John equation for tensor tomography in three-dimensions. Inverse Probl. 32, 105013 (2016). doi: 10.1088/0266-5611/32/10/105013

Sharafutdinov, V.A.: Integral Geometry of Tensor Fields. VSP, Utrecht (1994)