Integral Cross Sections for Electron–Zinc Scattering over a Broad Energy Range (0.01–5000 eV)

R P McEachran1, B P Marinković2, G. Garcı́a3, Ronald D. White4, Peter W. Stokes4, D. B. Jones5, M. J. Brunger5,6
1Plasma Research Laboratory, The Research School of Physics, Australian National University 1 , Canberra, A.C.T. 0200, Australia
2Institute of Physics Belgrade, University of Belgrade 2 , Pregrevica 118, 11080 Belgrade, Serbia
3Instituto de Física Fundamental, CSIC 3 , Serrano 113-bis, E-28006, Madrid, Spain
4College of Science and Engineering, James Cook University 4 , Townsville, Queensland 4810, Australia
5College of Science and Engineering, Flinders University 5 , GPO Box 2100, Adelaide, S.A. 5001, Australia
6Department of Actuarial Science and Applied Statistics, Faculty of Business and Information Science, UCSI University 6 , Kuala Lumpur 56000, Malaysia

Tóm tắt

We report results from the application of our optical potential and relativistic optical potential methods to electron–zinc scattering. The energy range of this study was 0.01–5000 eV, with original results for the summed discrete electronic-state integral excitation cross sections and total ionization cross sections being presented here. When combined with our earlier elastic scattering data [Marinković et al., Phys. Rev. A 99, 062702 (2019)], and the quite limited experimental and theoretical results for those processes from other groups, we critically assemble a recommended integral cross section database for electron–zinc scattering. Electron transport coefficients are subsequently calculated for reduced electric fields ranging from 0.1 to 1000 Td, using a multiterm solution of Boltzmann’s equation. Some differences with corresponding results from the earlier study of White et al. [J. Phys. D: Appl. Phys. 37, 3185 (2004)] were noted, indicating in part the necessity of having accurate and complete cross section data, over a wide energy regime, when undertaking such transport simulations.

Từ khóa


Tài liệu tham khảo

2018, J. Phys. Chem. Ref. Data, 47, 033103, 10.1063/1.5047139

2018, J. Phys. Chem. Ref. Data, 47, 043104, 10.1063/1.5081132

2019, J. Phys. Chem. Ref. Data, 48, 033103, 10.1063/1.5115353

2019, Phys. Rev. A, 99, 062702, 10.1103/physreva.99.062702

2016, Rev. Mod. Phys., 88, 025004, 10.1103/revmodphys.88.025004

2017, Plasma Process. Polym., 14, 1600098, 10.1002/ppap.201600098

2004, J. Phys. D: Appl. Phys., 37, 3185, 10.1088/0022-3727/37/22/021

2013, J. Appl. Phys., 114, 093301, 10.1063/1.4820575

2001, J. Phys. D: Appl. Phys., 34, 909, 10.1088/0022-3727/34/6/313

2002, Plasma Sources Sci. Technol., 11, A55, 10.1088/0963-0252/11/3a/308

2019

2011, Phys. Rev. A, 83, 042702, 10.1103/physreva.83.042702

1994, Phys. Rev. A, 50, 3954, 10.1103/physreva.50.3954

2010

1976, Phys. Rev. A, 13, 1842, 10.1103/physreva.13.1842

2000, Phys. Rev. A, 61, 022723, 10.1103/physreva.61.022723

2001, Phys. Rev. A, 64, 052707, 10.1103/physreva.64.052707

2017, Plasma Sources Sci. Technol., 26, 024007, 10.1088/1361-6595/aa51ef

2018, Plasma Sources Sci. Technol., 27, 053001, 10.1088/1361-6595/aabdd7

2003, J. Phys. D: Appl. Phys., 36, 3125, 10.1088/0022-3727/36/24/006

1976, J. Phys. B: At., Mol. Phys., 9, 3225, 10.1088/0022-3700/9/18/014

2005, Phys. Rev. A, 71, 022716, 10.1103/physreva.71.022716

2005, Phys. Rev. A, 72, 012706, 10.1103/physreva.72.012706

1991

Itikawa, 2000, Electron collisions with atoms, Landolt-Börnstein: Group I Elementary Particles

2015, Can. J. Phys., 93, 617, 10.1139/cjp-2014-0485

See [email protected] for tables of the transport coefficients.

2016, Eur. Phys. J. D, 70, 46, 10.1140/epjd/e2016-60641-8

2018, Phys. Chem. Chem. Phys., 20, 022368, 10.1039/c8cp03297a

2014, Appl. Radiat. Isot., 83, 148, 10.1016/j.apradiso.2013.01.010