Integrable Weak Saddles for Trigonometric Liénard Systems

Springer Science and Business Media LLC - Tập 26 - Trang 551-556 - 2019
Claudia Valls1
1Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal

Tóm tắt

We give a complete algebraic characterization of the integrable weak saddles for planar trigonometric Liénard systems. The main tools used in our proof are the classification of the weak saddles on planar analytic Liénard systems and the characterization of some subfields of the quotient field of the ring of trigonometric polynomials.

Tài liệu tham khảo

Cartan É, Cartan H. Note sur la génération des oscillations entretenues. Annales des P.T.T 1925;14:1196–1207.

Cherkas LA. Conditions for a Liénard equation to have a centre. Differential Equations 1976;12:201–206.

Liapunov AM, Vol. 30. Stability of motion mathematics in science and engineering. New York-London: Academic Press; 1966.

Liénard A. Etude des oscillations entretenues. Revue géner de l’electr 1928;23: 901–906; 906–954.

Moussu R. Une démonstration d’un théoréme de Lyapunov-Poincaré. Astérisque 1982;98/99:216–223.

Poincaré H, Vol. I. Oeuvres de Henri Poincaré. Paris: Gauthier-Villars; 1951, pp. 3–84.

Van der Pol B. Sur les oscillations de relaxation. Phil Mag 1926;2:978–992.

Van der Pol B. The non linear theory of electrical oscillations. Proc Inst Radio Eng 1934;22:1051–1086.

van der Waerden BL, Vol. 1. Modern algebra, 2nd ed. New York: Frederick Ungar; 1966.

Ye YQ, Cai SL, Chen LS, Ke CH, Luo DJ, Ma ZE, Er NW, Wang MS, Yang XA. 1986. Theory of Limit Cycles, 2nd ed., Transl Math Monogr, 66, Amer Math Soc, Providence.