Insulin expressing hepatocytes not destroyed in transgenic NOD mice

Journal of Autoimmune Diseases - Tập 1 - Trang 1-12 - 2004
Muhammad T Tabiin1,2, Christopher P White1, Grant Morahan3, Bernard E Tuch1
1Diabetes Transplant Unit, Prince of Wales Hospital, The University of New South Wales, Sydney, Australia
2Joslin Diabetes Centre, Harvard Medical School, Boston, USA
3Walter Eliza Hall Institute of Medical Research, Melbourne, Australia

Tóm tắt

The liver has been suggested as a suitable target organ for gene therapy of Type 1 diabetes. However, the fundamental issue whether insulin-secreting hepatocytes in vivo will be destroyed by the autoimmune processes that kill pancreatic β cells has not been fully addressed. It is possible that the insulin secreting liver cells will be destroyed by the immune system because hepatocytes express major histocompatibility complex (MHC) class I molecules and exhibit constitutive Fas expression; moreover the liver has antigen presenting activity. Together with previous reports that proinsulin is a possible autoantigen in the development of Type 1 diabetes, the autoimmune destruction of insulin producing liver cells is a distinct possibility. To address this question, transgenic Non-Obese Diabetic (NOD) mice which express insulin in the liver were made using the Phosphoenolpyruvate Carboxykinase (PEPCK) promoter to drive the mouse insulin I gene (Ins). The liver cells were found to possess preproinsulin mRNA, translate (pro)insulin in vivo and release it when exposed to 100 nmol/l glucagon in vitro. The amount of insulin produced was however significantly lower than that produced by the pancreas. The transgenic PEPCK-Ins NOD mice became diabetic at 20–25 weeks of age, with blood glucose levels of 24.1 ± 1.7 mmol/l. Haematoxylin and eosin staining of liver sections from these transgenic NOD PEPCK-Ins mice revealed the absence of an infiltrate of immune cells, a feature that characterised the pancreatic islets of these mice. These data show that hepatocytes induced to produce (pro)insulin in NOD mice are not destroyed by an ongoing autoimmune response; furthermore the expression of (pro)insulin in hepatocytes is insufficient to prevent development of diabetes in NOD mice. These results support the use of liver cells as a potential therapy for type 1 diabetes. However it is possible that a certain threshold level of (pro)insulin production might have to be reached to trigger the autoimmune response.

Tài liệu tham khảo

Simpson AM, Marshall GM, Tuch BE, Maxwell L, Szymanska B, Tu J, Beynon S, Swan MA, Camacho M: Gene therapy of diabetes: glucose-stimulated insulin secretion in a human hepatoma cell line (HEPG2ins/g). Gene Ther. 1997, 4: 1202-1215. 10.1038/sj.gt.3300527. Tuch BE, Szymanska B, Yao M, Tabiin MT, Gross DJ, Holman S, Swan MA, Humphrey RK, Marshall GM, Simpson AM: Function of a genetically modified human liver cell line that stores, processes and secretes insulin. Gene Ther. 2003, 10 (6): 490-503. 10.1038/sj.gt.3301911. Vollenweider F, Irminger JC, Gross DJ, Villa-Korniaroff L, Halban PA: Processing of proinsulin by transfected hepatoma (FAO) cells. J Biol Chem. 1992, 267: 14629-14636. Gros L, Montoliu L, Riu E, Lebrigand L, Bosch F: Regulated production of mature insulin by non-β-cells. Hum Gene Ther. 1997, 8: 2249-2259. Lu D, Tamemoto H, Shibata H, Saito I, Takeuchi T: Regulatable production of insulin from primary cultured hepatocytes–insulin production is upregulated by glucagon and cAMP and down regulated by insulin. Gene Ther. 1998, 5: 888-895. 10.1038/sj.gt.3300677. Kolodka TM, Finegold M, Moss L, Woo SL: Gene therapy for diabetes mellitus in rats by hepatic expression of insulin. Proc Natl Acad Sci. 1995, 92: 3293-3297. Valera A, Fillat C, Costa C, Sabater J, Visa J, Pujol A, Bosch F: Regulated expression of human insulin in the liver of transgenic mice corrects diabetic alterations. FASEB J. 1994, 8: 440-447. Mitanchez D, Chen R, Massias JF, Porteu A, Mignon A, Bertagna X, Kahn A: Regulated expression of mature human insulin in the liver of transgenic mice. FEBS Lett. 1998, 421: 285-289. 10.1016/S0014-5793(97)01574-3. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, Barshack I, Seijffers R, Kopolovic J, Kaiser N, Karasik A: Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med. 2000, 6: 568-572. 10.1038/75050. Scherer MN, Graeb C, Tange S, Dyson C, Jauch KW, Geissler EK: Immunologic considerations for therapeutic strategies utilizing allogeneic hepatocytes: hepatocyte-expressed membrane-bound major histocompatibility complex class I antigen sensitizes while soluble antigen suppresses the immune response in rats. Hepatology. 2000, 32: 999-1007. 10.1053/jhep.2000.19255. Fujino M, Li XK, Kitazawa Y, Funeshima N, Guo L, Okuyama T, Amano T, Amemiya H, Suzuki S: Selective repopulation of mice liver after Fas-resistant hepatocyte transplantation. Cell Transplant. 2001, 10: 353-361. Mehal WZ, Azzaroli F, Crispe IN: Antigen presentation by liver cells controls intrahepatic T cell trapping, whereas bone marrow-derived cells preferentially promote intrahepatic T cell apoptosis. J Immunol. 2001, 167: 667-673. Gleichmann H, Bottazzo GF, Gries FA: Cytoplasmic islet cell autoantibodies: prevalence and pathogenic significance. Adv Exp Med Biol. 1988, 246: 71-7. Wegmann DR, Gill RG, Norbury-Glaser M, Schloot N, Daniel D: Analysis of the spontaneous T cell response to insulin in NOD mice. J Autoimmun. 1994, 7 (6): 833-43. 10.1006/jaut.1994.1066. Wynshaw-Boris A, Lugo TG, Short JM, Fournier RE, Hanson RW: Identification of a cAMP regulatory region in the gene for rat cytosolic phosphoenolpyruvate carboxykinase (GTP). Use of chimeric genes transfected into hepatoma cells. J Biol Chem. 1984, 259: 12161-12169. Tuch BE, Ng AB, Jones A, Turtle JR: Histologic differentiation of human fetal pancreatic explants transplanted into nude mice. Diabetes. 1984, 33: 1180-1187. Hogan B: Molecular biology. Enhancers, chromosome position effects, and transgenic mice. Nature. 1983, 306: 313-314. Simms D, Cizdziel PE, Chomczynski P: Focus. 1993, 15 (4): 99 Wentworth BM, Schaefer IM, Villa-Komaroff L, Chirgwin JM: Characterization of the two nonallelic genes encoding mouse preproinsulin. J Mol Evol. 1986, 23: 305-312. McKenzie KJ, Hind C, Farquaharson MA, McGill M, Foulis AK: Demonstration of insulin production and storage in insulinomas by in situ hybridization and immunocytochemistry. J Pathol. 1997, 181: 218-222. 10.1002/(SICI)1096-9896(199702)181:2<218::AID-PATH732>3.3.CO;2-B. Lipes MA, Cooper EM, Skelly R, Rhodes CJ, Boschetti E, Weir GC, Davalli AM: Insulin-secreting non-islet cells are resistant to autoimmune destruction. Proc Natl Acad Sci USA. 1996, 93: 8595-8600. 10.1073/pnas.93.16.8595. Bowman MA, Campbell L, Darrow BL, Ellis TM, Suresh A, Atkinson MA: Immunological and metabolic effects of prophylactic insulin therapy in the NOD-scid/scid adoptive transfer model of IDDM. Diabetes. 1996, 45: 205-8. Thivolet CH, Goillot E, Bedossa P, Durand A, Bonnard M, Orgiazzi J: Insulin prevents adoptive cell transfer of diabetes in the autoimmune non-obese diabetic mouse. Diabetologia. 1991, 34: 314-9. 10.1007/BF00418274. Garcia-Ruiz JP, Ingram R, Hanson RW: Changes in hepatic mRNA for Phosphoenol pyruvate carboxykinase (GTP) during development. Proc Natl Acad Sci USA. 1978, 75: 4189-4193. Fuller RS, Brake AJ, Thorner J: Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science. 1989, 246: 482-486.