Instability and Bifurcation in a Trend Depending Price Formation Model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Burger, M., Caffarelli, L.A., Markowich, P.A., Wolfram, M.-T.: On a Boltzmann type price formation model. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 469, 2157, 20130126 (2013), 20 pp.
Burger, M., Caffarelli, L.A., Markowich, P.A.: Partial differential equations in the socio-economic sciences. Philos. Trans. R. Soc. A 372, 20130406 (2014)
Burger, M., Caffarelli, L.A., Markowich, P.A., Wolfram, M.-T.: On the asymptotic behavior of a Boltzmann-type price formation model. Commun. Math. Sci. 12(7), 1353–1361 (2014)
Caffarelli, L.A., Markowich, P.A., Pietschmann, J.-F.: On a price formation free boundary model by Lasry and Lions. C. R. Math. Acad. Sci. Paris 349(11–12), 621–624 (2011)
Caffarelli, L.A., Markowich, P.A., Wolfram, M.-T.: On a price formation free boundary model by Lasry and Lions: the Neumann problem. C. R. Math. Acad. Sci. Paris 349(15–16), 841–844 (2011)
Carrillo, J., González, M., Gualdani, M., Schonbek, M.: Classical solutions for a nonlinear Fokker-Planck equation arising in computational neuroscience. Commun. Partial Differ. Equ. 38, 385–409 (2013)
Chayes, L., González, M.d.M., Gualdani, M.P., Kim, I.: Global existence, uniqueness y asymptotics of solutions to a model in price formation. SIAM J. Math. Anal. 41(5), 2107–2135 (2009)
Chow, S.N., Hale, J.K.: Methods of Bifurcation Theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 251. Springer, New York (1982)
González, M.d.M., Gualdani, M.P.: Asymptotics for a symmetric equation in price formation. Appl. Math. Optim. 59(2), 233–246 (2009)
González, M.d.M., Gualdani, M.P.: Asymptotics for a free boundary model in price formation. Nonlinear Anal. 74(10), 3269–3294 (2011)
González, M.d.M., Gualdani, M.P.: Some Non-standard Sobolev Spaces, Interpolation and its Application to PDE. Acta Appl. Math. 121, 57–67 (2012)
Guidotti, P., Merino, S.: Hopf bifurcation in a scalar reaction diffusion equation. J. Differ. Equ. 140(1), 209–222 (1997)
Haragus, M., Iooss, G.: Local Bifurcations, Center Manifolds, and Normal Forms in Infinite-Dimensional Dynamical Systems. Universitext. Springer, London (2011)
Henry, D.: Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)