Insights on the evolution of trehalose biosynthesis

Nelson Avonce1,2, Alfredo Mendoza-Vargas1, Enrique Morett1, Gabriel Iturriaga2
1Centro de Investigación en Biotecnología-UAEM, Col. Chamilpa, Cuernavaca, Mexico
2Instituto de Biotecnología-UNAM, Col. Chamilpa, Cuernavaca, Mexico

Tóm tắt

Abstract Background

The compatible solute trehalose is a non-reducing disaccharide, which accumulates upon heat, cold or osmotic stress. It was commonly accepted that trehalose is only present in extremophiles or cryptobiotic organisms. However, in recent years it has been shown that although higher plants do not accumulate trehalose at significant levels they have actively transcribed genes encoding the corresponding biosynthetic enzymes.

Results

In this study we show that trehalose biosynthesis ability is present in eubacteria, archaea, plants, fungi and animals. In bacteria there are five different biosynthetic routes, whereas in fungi, plants and animals there is only one. We present phylogenetic analyses of the trehalose-6-phosphate synthase (TPS) and trehalose-phosphatase (TPP) domains and show that there is a close evolutionary relationship between these domains in proteins from diverse organisms. In bacteria TPS and TPP genes are clustered, whereas in eukaryotes these domains are fused in a single protein.

Conclusion

We have demonstrated that trehalose biosynthesis pathways are widely distributed in nature. Interestingly, several eubacterial species have multiple pathways, while eukaryotes have only the TPS/TPP pathway. Vertebrates lack trehalose biosynthetic capacity but can catabolise it. TPS and TPP domains have evolved mainly in parallel and it is likely that they have experienced several instances of gene duplication and lateral gene transfer.

Từ khóa


Tài liệu tham khảo

Cavalier-Smith T: Obscells as proto-organisms: Membrane heredity, lithophosphorylation, and the origins of the genetic code, the First Cells, and Photosynthesis. J Mol Evol. 2001, 53: 555-595. 10.1007/s002390010245.

McMullan G, Christie JM, Rahman TJ, Banat IM, Ternan NG, Marchant R: Habitat, applications and genomics of the aerobic, thermophilic genus Gaobacillus. Biochem Soc Trans. 2004, 32: 214-217. 10.1042/BST0320214.

Madigan MT, Oren A: Thermophilic and halophilic extremophiles. Curr Opin Microbiol. 1999, 2: 265-269. 10.1016/S1369-5274(99)80046-0.

Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN: Living with water stress: evolution of osmolyte systems. Science. 1982, 217: 1214-1222. 10.1126/science.7112124.

Elbein AD, Pan YT, Pastuszak I, Carroll D: New insights on trehalose: a multifuntional molecule. Glycobiol. 2003, 13: 17R-27R. 10.1093/glycob/cwg047.

Strøm AR, Kaasen I: Trehalose metabolism in Escherichia coli : stress protection and stress regulation of gene expression. Mol Microbiol. 1993, 8: 205-210. 10.1111/j.1365-2958.1993.tb01564.x.

Horlacher R, Boss W: Characterization of TreR, the major regulator of the Escherichia coli trehalose system. J Biol Chem. 1997, 272: 13026-13032. 10.1074/jbc.272.20.13026.

Argüelles JC: Physiological roles of trehalose in bacteria and yeast: a comparative analysis. Arch Microbiol. 2000, 174: 217-224. 10.1007/s002030000192.

De Smet KA, Weston A, Brown IN, Young DB, Robertson BD: Three pathways for trehalose biosynthesis in mycobacteria. Microbiol. 2000, 146: 199-208.

Richards AB, Krakowka S, Dexter LB, Schmid H, Wolterbeek APM, Waalkens-Berendsen DH, Shigoyuki A, Kurimoto M: Trehalose: a review of properties, history of use and human tolerance, and results of multiple safety studies. Food Chem Toxicol. 2002, 40: 871-898. 10.1016/S0278-6915(02)00011-X.

Elbein AD: The metabolism of α, α-trehalose. Adv Carbohydr Chem Biochem. 1974, 30: 227-256.

Thevelein JM: Regulation of trehalose mobilization in fungi. Microbiol Rev. 1984, 48: 42-59.

Hounsa CG, Brandt EV, Thevelein J, Hohmann S, Prior BA: Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiol. 1998, 144: 671-680.

De Virgilio C, Hottiger T, Dominguez J, Boller T, Wiemken A: The role of trehalose synthesis for the adquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem. 1994, 219: 179-186. 10.1111/j.1432-1033.1994.tb19928.x.

Hottiger T, De Virgilio C, Hall NM, Boller T, Wiemken A: The role of trehalose synthesis for the adquisition of thermotolerance in yeast. II. Physiologycal concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem. 1994, 219: 187-193. 10.1111/j.1432-1033.1994.tb19929.x.

Singer MA, Lindquist S: Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 1998, 16: 460-468. 10.1016/S0167-7799(98)01251-7.

Thevelein JM, Hohmann S: Trehalose synthase: guard to the gate of glycolysis in yeast?. Trends Biochem Sci. 1995, 20: 3-10. 10.1016/S0968-0004(00)88938-0.

Neves MJ, Hohmann S, Bell W, Dumortier F, Luyten K, Ramos J, Cobbaert P, de Koning W, Kaneza Z, Thevelein JM: Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. Curr Genet. 1995, 27: 110-122. 10.1007/BF00313424.

Hohmann S, Bell W, Neves MJ, Valckx D, Thevelein JM: Evidence for trehalose-6-phosphate-dependent and -independent mechanisms in the control of sugar influx into yeast glycolysis. Mol Microbiol. 1996, 20: 981-991. 10.1111/j.1365-2958.1996.tb02539.x.

Gancedo C, Flores CL: The importance of a functional trehalose biosynthetic pathway for the life of yeast and fungi. FEMS Yeast Res. 2004, 4: 351-359. 10.1016/S1567-1356(03)00222-8.

Weisburd S: Death-Defying Dehydration. Sci News. 1988, 13: 107-110.

Colaço C, Sen S, Thangavelu M, Pinder S, Roser B: Extraordinary stability of enzymes dried in trehalose: simplified molecular biology. Biotechnology (N Y). 1992, 10: 1007-1011. 10.1038/nbt0992-1007.

Becker A, Schloeder P, Steele JE, Wegener G: The regulation of trehalose metabolism in insects. Experientia. 1996, 52: 433-439. 10.1007/BF01919312.

Eastmond PJ, van Dijken AJH, Spielman M, Kerr A, Tissier AF, Dickinson HG, Jones JDG, Smeekens SC, Graham IA: Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J. 2002, 29: 225-235. 10.1046/j.1365-313x.2002.01220.x.

Avonce N, Leyman B, Mascorro-Gallardo O, Van Dijck P, Thevelein JM, Iturriaga G: The Arabidopsis Trehalose-6-P Synthase AtTPS1 Gene Is a Regulator of Glucose, Abscisic Acid, and Stress Signalling. Plant Physiol. 2004, 136: 3649-59. 10.1104/pp.104.052084.

Cabib E, Lenoir LF: The biosynthesis of trehalose phosphate. J Biol Chem. 1958, 231: 259-275.

Higashiyama T: Novel functions and applications of trehalose. Pure Appl Chem. 2002, 74: 1263-1269.

Streeter JG, Bhagwat A: Biosynthesis of trehalose from maltooligosaccharides in Rhizobia. Can J Microbiol. 1999, 45: 716-721. 10.1139/cjm-45-8-716.

Wannet WJB, Op den Camp HJM, Wisselink HW, van der Drift C, Van Griensven LJLD, Vogels GD: Purification and characterization of trehalose phosphorylase from the commercial mushroom Agaricus bisporus. Biochim Biophys Acta. 1998, 1425: 177-188.

Schiraldi Ch, Di Lernia I, De Rosa M: Trehalose production: exploiting novel approaches. Trends Biotechnol. 2002, 20: 420-425. 10.1016/S0167-7799(02)02041-3.

Qu Q, Lee SJ, Boss W: TreT, a novel trehalose glycosyltransferring synthase of the hyperthermophilic archeon Thermococcus litoralis. J Biol Chem. 2004, 279: 47890-47897. 10.1074/jbc.M404955200.

Ryu SI, Park CS, Cha J, Woo EJ, Lee SB: A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: molecular cloning and characterization. Biochem Biophys Res Commun. 2005, 329: 429-436. 10.1016/j.bbrc.2005.01.149.

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. 10.1006/jmbi.1990.9999.

Worning P, Jensen LJ, Nelson KE: Structural anaysis of DNA sequence: evidence for lateral gene transfer in Themotoga maritima. Nucl Acids Res. 2000, 28: 706-709. 10.1093/nar/28.3.706.

Gibson RP, Turkenburg JP, Charnock SJ, Lloyd R, Davis GJ: Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. Chem Biol. 2002, 9: 1337-1346. 10.1016/S1074-5521(02)00292-2.

Vogel G, Fiehn O, Bressel LJR, Boller T, Wiemken A, Aeschbacher RA, Wingler A: Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J Exp Bot. 2001, 52: 1817-1826. 10.1093/jexbot/52.362.1817.

Bell W, Sun W, Hohmann S, Wera S, Reinders A, De Virgilio C, Wiemken A, Thevelein JM: Composition and functional analysis of the Saccaharomyces cerevisiae trehalose synthase complex. J Biol Chem. 1998, 273: 33311-33319. 10.1074/jbc.273.50.33311.

Van Dijck P, Mascorro-Gallardo JO, de Bus M, Royackers K, Iturriaga G, Thevelein JM: Truncation of Arabidopsis thaliana and Selaginella lepidophylla trehalose-6-phosphate synthase unlocks high catalytic activity and supports high trahalose levels on expression in yeast. Biochem J. 2002, 366: 63-71.

Garcia AB, Engler JA, Lyer S, Gerats T, Van Montagu M, Caplan AB: Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol. 1997, 115: 159-169.

Collet JF, Stroobant V, Pirard M, Delpierre G, Schaftingen EV: A new class of phosphotransferases phosphorylated on an aspartate residue in an amino-terminal DXDX(T/V) motif. J Biol Chem. 1998, 273: 14107-14112. 10.1074/jbc.273.23.14107.

Morais MC, Zhang W, Baker AS, Zhang G, Dunaway-Mariano D, Allen KN: The crystal structure of Bacillus cereus phosphonoacetaldehyde hydrolase: Insight into catalysis of phosphorus bond cleavage and catalytic diversification within the HAD enzyme superfamily. Biochem. 2000, 39: 10385-10396. 10.1021/bi001171j.

Rao KN, Kumaran D, Seetharaman J, Bonanno JB, Burley SK, Swaminathan S: Crystal structure of trehalose-6-phosphate phosphatase-related protein: Biochemical and biological implications. Protein Sci. 2006, 15: 1735-1744. 10.1110/ps.062096606.

Suzuki Y, Gojobori T: A method for detecting positive selection at single amino acid sites. Mol Biol Evol. 1999, 16: 1315-1328.

Zhang J, Nielsen R, Yang Z: Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005, 22: 2472-2479. 10.1093/molbev/msi237.

The Single Likelihood Ancestor Counting. [http://www.datamonkey.org/]

Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997, 13: 555-556.

The Gene Context Tool. [http://www.ibt.unam.mx/biocomputo/gecont.html]

Ciria R, Abreu-Goodger C, Morett E, Merino E: GeConT: gene context analysis. Bioinfor. 2004, 20: 2307-2308. 10.1093/bioinformatics/bth216.

Leyman B, Van Dijck P, Thevelein JM: An unexpected plethora of trehalose biosynthesis genes in Arabidopsis thaliana. Trends Plant Sci. 2001, 6: 510-513. 10.1016/S1360-1385(01)02125-2.

Seo HS, Koo YJ, Lim JY, Song JT, Kim CH, Kim JK, Lee JS, Choi YD: Characterization of a Bifunctional enzyme fusion of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase of Escherichia coli. App Environ Microbiol. 2000, 66: 2484-2490. 10.1128/AEM.66.6.2484-2490.2000.

Garg AK, Kim JK, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ: Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. PNAS. 2002, 99: 15898-15903. 10.1073/pnas.252637799.

Thompson J, Gibson T, Plewniak F, Jeanmougin F, Higgins D: The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25: 4876-4882. 10.1093/nar/25.24.4876.

Galtier N, Gouy M, Gautier C: SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Applic Biosci. 1996, 12: 543-548.

Thaller MC, Schippa S, Rosilini GM: Conserved sequence motifs among bacterial, eukaryotic, and archaeal phosphatases that define a new phosphohydrolase superfamily. Protein Sci. 1998, 7: 1647-1652.

Vogel G, Aeschbacher Muller J, Boller T, Wiemken A: Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J. 1998, 13: 673-683. 10.1046/j.1365-313X.1998.00064.x.

Blázquez MA, Santos E, Flores CL, Martínez-Zapater JM, Salinas J, Gancedo C: Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J. 1998, 13: 685-689. 10.1046/j.1365-313X.1998.00063.x.

Zentella R, Mascorro-Gallardo JO, Van Dijck P, Folch-Mallol J, Bonini B, Van Vaeck Ch, Gaxiola R, Covarrubias AA, Nieto-Sotelo J, Thevelein JM, Iturriaga G: A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol. 1999, 119: 1473-1482. 10.1104/pp.119.4.1473.

Schluepmann H, Pellny T, van Dijken A, Smeeekens S, Paul M: Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. PNAS. 2003, 100: 6849-6854. 10.1073/pnas.1132018100.

Price J, Laxmi A, St Martin S, Jang JCh: Global transcriptional profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell. 2004, 16: 2128-2150. 10.1105/tpc.104.022616.

Avonce N, Leyman B, Thevelein JM, Iturriaga G: Trehalose metabolism and glucose sensing in plants. Biochem Soc Trans. 2005, 33: 276-279. 10.1042/BST0330276.

Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W: GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol. 2004, 136: 2621-2632. 10.1104/pp.104.046367.

Tzvetkov M, Klopprogge C, Zelder O, Liebl W: Genetic dissection of trehalose biosynthesis in Corynebacterium glutamicum: inactivation of trehalose production leads to impaired growth and an altered cell wall lipid composition. Microbiol. 2003, 149: 1659-1673. 10.1099/mic.0.26205-0.

Lunn JE: Evolution of sucrose synthesis. Plant Physiol. 2002, 128: 1490-1500. 10.1104/pp.010898.

Salerno GL, Curatti L: Origin of sucrose metabolism in higher plants: when, how and why. Trends Plant Sci. 2003, 8: 63-69. 10.1016/S1360-1385(02)00029-8.

Castleden CK, Aoki N, Gillespie VJ, MacRae EA, Quick WP, Buchner P, Foyer CH, Furbank RT, Lunn JE: Evolution and function of the sucrose-phosphate synthase gene families in wheat and other grasses. Plant Physiol. 2004, 135: 1753-1764. 10.1104/pp.104.042457.

Roser B: Trehalose, a new approach to premium dried foods. Trends Food Sci Technol. 1991, 2: 166-169. 10.1016/0924-2244(91)90671-5.

Coutinho PM, Stam M, Blanc E, Henrissat B: Why are there so many carbohydrate-active enzyme-related genes in plants?. TRENDS Plant Sci. 2003, 8: 563-565. 10.1016/j.tplants.2003.10.002.

Felsenstein J: PHYLIP (Phylogeny Inference Package). 1993, Distributed by the author: Department of Genetics, University of Washington. Seattle, WA.

Guindon S, Gascuel O: A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. System Biol. 2003, 52: 696-704. 10.1080/10635150390235520.