Những hiểu biết về ảnh hưởng của việc cấy giống vi khuẩn lam đối với động lực học vi sinh vật trong đất canh tác dưới điều kiện mưa mô phỏng

Biology and Fertility of Soils - Tập 59 - Trang 103-116 - 2022
Adriana L. Alvarez1, Sharon L. Weyers2, Robert D. Gardner1
1Department of Bioproducts and Biosystems Engineering, University of Minnesota, St. Paul, USA
2USDA-ARS, North Central Soil Conservation Research Laboratory, Morris, USA

Tóm tắt

Ảnh hưởng của việc cấy giống vi khuẩn lam cố định đạm (Anabaena cylindrica) lên động lực dinh dưỡng và vi sinh vật của một loại đất Mollisol canh tác đã được nghiên cứu dưới điều kiện mưa cao cường độ. Các chậu được cấy giống và không cấy giống (chứng) đã được ủ trong 14 ngày và sau đó chịu ba sự kiện mưa trong 1 tuần, tiếp theo là ba sự kiện hàng tuần, tổng cộng có sáu sự kiện. Mẫu đất ở ba lớp độ sâu (0–1, 5–6, và 10–11 cm) đã được lấy tại bốn thời điểm: 1 ngày sau khi cấy giống, 14 ngày sau khi cấy giống, sau sự kiện mưa 1, và sau sự kiện mưa 6. Hàm lượng clorophyll a (Chla) trong đất, các phân đoạn hòa tan của N (SolN) và C hữu cơ (SolC), sinh khối vi sinh vật C (MBC) và N (MBN), hoạt động vi sinh vật (thủy phân FDA), và hô hấp đất (CO2 thoát ra) được xác định. Kết quả cho thấy sự thay đổi theo độ sâu liên quan đến Chla, SolC, SolN, MBC, MBN, và thủy phân FDA với ảnh hưởng rõ ràng hơn ở lớp bề mặt (0–1 cm). Hô hấp đất thay đổi theo độ ẩm của đất và tăng lên trong các điều trị cấy giống. Sau tất cả các mô phỏng mưa (49 ngày sau khi cấy giống), hàm lượng SolC, MBC, MBN, và thủy phân FDA cao hơn trong đất bề mặt của các điều trị cấy giống cho thấy những thay đổi tích cực mà tồn tại sau khi có mưa liên tiếp. Những phát hiện này gợi ý rằng việc cải tạo đất bằng vi khuẩn lam có thể nâng cao chất lượng và khả năng phục hồi của đất nông nghiệp khi tiếp xúc với mưa có cường độ cao.

Từ khóa

#vi khuẩn lam #động lực học vi sinh vật #đất canh tác #mưa mô phỏng #chất lượng đất

Tài liệu tham khảo

Alvarez AL, Weyers SL, Goemann HM, Peyton BM, Gardner RD (2021) Microalgae, soil and plants: a critical review of microalgae as renewable resources for agriculture. Algal Res 54:102200. https://doi.org/10.1016/j.algal.2021.102200 Alvarez AL, Weyers SL, Johnson JMF, Gardner RD (2021) Soil inoculations with Anabaena cylindrica improve aggregate stability and nutrient dynamics in an arable soil and exhibit potential for erosion control. J Appl Phycol 33:3041–3057. https://doi.org/10.1007/s10811-021-02526-9 Asghari S, Zeinalzadeh K, Kheirfam H, Azar BH (2022) The impact of cyanobacteria inoculation on soil hydraulic properties at the lab-scale experiment. Agric Water Manag 272:107865. https://doi.org/10.1016/j.agwat.2022.107865 Balota EL, Colozzi-Filho A, Andrade DS, Dick RP (2003) Microbial biomass in soils under different tillage and crop rotation systems. Biol Fertil Soils 38:15–20. https://doi.org/10.1007/s00374-003-0590-9 Barger NN, Castle SC, Dean GN (2013) Denitrification from nitrogen-fixing biologically crusted soils in a cool desert environment, southeast Utah, USA. Ecol Process 2:16. https://doi.org/10.1186/2192-1709-2-16 Bottner P (1985) Response of microbial biomass to alternate moist and dry conditions in a soil incubated with 14C- and 15N-labelled plant material. Soil Biol Biochem 17:329–337. https://doi.org/10.1016/0038-0717(85)90070-7 Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842. https://doi.org/10.1016/0038-0717(85)90144-0 Cano-Díaz C, Maestre FT, Eldridge DJ, Singh BK, Bardgett RD, Fierer N, Delgado-Baquerizo M (2020) Contrasting environmental preferences of photosynthetic and non-photosynthetic soil cyanobacteria across the globe. Global Ecol Biogeogr 29:2025–2038. https://doi.org/10.1111/geb.13173 Castle SC, Morrison CD, Barger NN (2011) Extraction of chlorophyll a from biological soil crusts: a comparison of solvents for spectrophotometric determination. Soil Biol Biochem 43:853–856. https://doi.org/10.1016/j.soilbio.2010.11.025 Chamizo S, Mugnai G, Rossi F, Certini G, De Philippis R (2018) Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci 6:49. https://doi.org/10.3389/fenvs.2018.00049 Chen CR, Xu ZH, Keay P, Zhang SL (2005) Total soluble nitrogen in forest soils as determined by persulfate oxidation and by high temperature catalytic oxidation. Aust J Soil Res 43:515–523. https://doi.org/10.1071/SR04132 Chen J, Yang L, Chen X, Ripp S, Radosevich M, Zhuang J (2021) Bacterial mobility facilitated by soil depth and intact structure. Soil till Res 209:104911. https://doi.org/10.1016/j.still.2020.104911 Cook FJ, Knight JH (2003) Oxygen transport to plant roots: modeling for physical understanding of soil aeration. Soil Sci Soc Am J 67:20–31. https://doi.org/10.2136/sssaj2003.2000 Dai Z, Su W, Chen H, Barberán A, Zhao H, Yu M, Yu L, Brookes PC, Schadt CW, Chang SX, Xu J (2018) Long-term nitrogen fertilization decreases bacterial diversity and favors the growth of Actinobacteria and Proteobacteria in agro-ecosystems across the globe. Glob Chang Biol 24:3452–3461. https://doi.org/10.1111/gcb.14163 De Almeida GC, Figueredo CC (2020) What we really know about the composition and function of microalgae cell coverings? - an overview. Acta Bot Brasilica 34:599–614. https://doi.org/10.1590/0102-33062020abb0309 de Castro JS, Calijuri ML, Assemany PP, Cecon PR, de Assis IR, Ribeiro VJ (2017) Microalgae biofilm in soil: greenhouse gas emissions, ammonia volatilization and plant growth. Sci Total Environ 574:1640–1648. https://doi.org/10.1016/j.scitotenv.2016.08.205 Dick RP, Breakwell DP, Turco RF (1997) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (Eds) Methods for assessing soil quality, Volume 49, SSSA Special Publications. Soil Science Society of America, Inc., Madison, pp 247–271. https://doi.org/10.2136/sssaspecpub49.c15 Gay JD, Goemann HM, Currey B, Stoy PC, Christiansen JR, Miller PR, Poulter B, Peyton B, Brookshire ENJ (2022) Climate mitigation potential and soil microbial response of cyanobacteria-fertilized bioenergy crops in a cool semi-arid cropland. GCB Bioenergy 14:1303–1320. https://doi.org/10.1111/gcbb.13001 Green VS, Stott DE, Diack M (2006) Assay for fluorescein diacetate hydrolytic activity: optimization for soil samples. Soil Biol Biochem 38:693–701. https://doi.org/10.1016/j.soilbio.2005.06.020 Gregorich EG, Carter MR, Angers DA, Monrea CM, Ellert BH (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74:367–385. https://doi.org/10.4141/cjss94-051 Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266. https://doi.org/10.1016/j.soilbio.2003.09.012 Hart SC, Stark JM, Davidson EA, Firestone MK (1994) Nitrogen mineralization, immobilization, and nitrification. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (Eds) Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5.2, SSSA Book Series. Soil Science Society of America, Inc., Madison, pp 985–1018. https://doi.org/10.2136/sssabookser5.2.c42 Hayhoe K, Wuebbles DJ, Easterling DR, Fahey DW, Doherty S, Kossin J, Sweet W, Vose R, Wehner M (2018) Our changing climate. In: Reidmiller DR, Avery CW, Easterling DR, Kunkel KE, Lewis KLM, Maycock TK, Stewart BC (Eds) Impacts, risks, and adaptation in the United States: Fourth national climate assessment, vol. II. U.S. Global Change Research Program, Washington, DC, pp 72–144. https://doi.org/10.7930/NCA4.2018.CH2 Jacobsen OH, Moldrup P, Larsen C, Konnerup L, Petersen LW (1997) Particle transport in macropores of undisturbed soil columns. J Hydrol 196:185–203. https://doi.org/10.1016/S0022-1694(96)03291-X Jenkinson DS, Powlson DD (1976) The effects of biocidal treatments on metabolism in soil-I. Fumigation with Chloroform Soil Biol Biochem 8:167–177. https://doi.org/10.1016/0038-0717(76)90001-8 Jenkinson DS, Brookes PC, Powlson DS (2004) Measuring soil microbial biomass. Soil Biol Biochem 36:5–7. https://doi.org/10.1016/j.soilbio.2003.10.002 Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biol Biochem 28:25–31. https://doi.org/10.1016/0038-0717(95)00102-6 Kabiri V, Raiesi F, Ghazavi MA (2016) Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agric Ecosyst Environ 232:73–84. https://doi.org/10.1016/j.agee.2016.07.022 Kakumanu ML, Cantrell CL, Williams MA (2013) Microbial community response to varying magnitudes of desiccation in soil: a test of the osmolyte accumulation hypothesis. Soil Biol Biochem 57:644–653. https://doi.org/10.1016/j.soilbio.2012.08.014 Kallenbach C, Grandy AS (2011) Controls over soil microbial biomass responses to carbon amendments in agricultural systems: a meta-analysis. Agric Ecosyst Environ 144:241–252. https://doi.org/10.1016/j.agee.2011.08.020 Kheirfam H, Sadeghi SH, Darki BZ, Homaee M (2017) Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria. CATENA 152:40–46. https://doi.org/10.1016/j.catena.2017.01.006 Khoja TM, Whitton BA (1975) Heterotrophic growth of filamentous blue-green algae. Br Phycol J 10:139–148. https://doi.org/10.1080/00071617500650131 Landesman WJ, Dighton J (2011) Shifts in microbial biomass and the bacteria: fungi ratio occur under field conditions within 3 h after rainfall. Microb Ecol 62:228–236. https://doi.org/10.1007/s00248-011-9811-1 Liang BC, MacKenzie AF, Schnitzer M, Monreal CM, Voroney PR, Beyaert RP (1997) Management-induced change in labile soil organic matter under continuous corn in eastern Canadian soils. Biol Fertil Soils 26:88–94. https://doi.org/10.1007/s003740050348 Liu W, Zhang Z, Wan S (2009) Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob Chang Biol 15:184–195. https://doi.org/10.1111/j.1365-2486.2008.01728.x Luo Y, Zhou X (2006) Soil respiration and the environment. Elsevier Academic Press, San Diego, CA Ma Q, Wu L, Wang J, Ma J, Zheng N, Hill PW, Chadwick D, Jones DL (2018) Fertilizer regime changes the competitive uptake of organic nitrogen by wheat and soil microorganisms: An in-situ uptake test using 13C, 15N labelling, and 13C-PLFA analysis. Soil Biol Biochem 125:319–327. https://doi.org/10.1016/j.soilbio.2018.08.009 Malam Issa O, Défarge C, Trichet J, Valentin C, Rajot JL (2009) Microbiotic soil crusts in the Sahel of Western Niger and their influence on soil porosity and water dynamics. CATENA 77:48–55. https://doi.org/10.1016/j.catena.2008.12.013 Maqubela MP, Muchaonyerwa P, Mnkeni PNS (2012) Inoculation effects of two South African cyanobacteria strains on aggregate stability of a silt loam soil. African J Biotechnol 11:10726–10735. https://doi.org/10.5897/AJB11.2111 Marks EAN, Miñón J, Pascual A, Montero O, Navas LM, Rad C (2017) Application of a microalgal slurry to soil stimulates heterotrophic activity and promotes bacterial growth. Sci Total Environ 605–606:610–617. https://doi.org/10.1016/j.scitotenv.2017.06.169 Moyano FE, Manzoni S, Chenu C (2013) Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol Biochem 59:72–85. https://doi.org/10.1016/j.soilbio.2013.01.002 Murphy DV, Macdonald AJ, Stockdale EA, Goulding KWT, Fortune S, Gaunt JL, Poulton PR, Wakefield JA, Webster CP, Wilmer WS (2000) Soluble organic nitrogen in agricultural soils. Biol Fertil Soils 30:374–387. https://doi.org/10.1007/s003740050018 Nain L, Rana A, Joshi M, Jadhav SD, Kumar D, Shivay YS, Paul S, Prasanna R (2010) Evaluation of synergistic effects of bacterial and cyanobacterial strains as biofertilizers for wheat. Plant Soil 331:217–230. https://doi.org/10.1007/s11104-009-0247-z Nayak S, Prasanna R, Pabby A, Dominic TK, Singh PK (2004) Effect of urea, blue green algae and Azolla on nitrogen fixation and chlorophyll accumulation in soil under rice. Biol Fertil Soils 40:67–72. https://doi.org/10.1007/s00374-004-0738-2 Nisha R, Kaushik A, Kaushik CP (2007) Effect of indigenous cyanobacterial application on structural stability and productivity of an organically poor semi-arid soil. Geoderma 138:49–56. https://doi.org/10.1016/j.geoderma.2006.10.007 Niu J, Yang K, Tang Z, Wang Y (2017) Relationships between soil crust development and soil properties in the desert region of North China. Sustain 9:725. https://doi.org/10.3390/su9050725 Prosser JA, Speir TW, Stott DE (2011) Soil oxidoreductases and FDA hydrolysis. In: Dick RP (Ed) Methods of soil enzymology, vol. 9, SSSA Book Series. Soil Science Society of America, Madison, pp 103–124. https://doi.org/10.2136/sssabookser9.c6 Ren C, Chen J, Lu X, Doughty R, Zhao F, Zhong Z, Han X, Yang G, Feng Y, Ren G (2018) Responses of soil total microbial biomass and community compositions to rainfall reductions. Soil Biol Biochem 116:4–10. https://doi.org/10.1016/j.soilbio.2017.09.028 Rice CW, Moorman TB, Beare M (1997) Role of microbial biomass carbon and nitrogen in soil quality. In: Doran JW, Jones AJ (Eds) Methods for assessing soil quality, vol. 49, SSSA Special Publications. Soil Science Society of America, Inc., Madison, pp 203–215. https://doi.org/10.2136/sssaspecpub49.c12 Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41. https://doi.org/10.1007/s11120-006-9065-9 Rogers SL, Burns RG (1994) Changes in aggregate stability, nutrient status, indigenous microbial populations, and seedling emergence, following inoculation of soil with Nostoc muscorum. Biol Fertil Soils 18:209–215. https://doi.org/10.1007/BF00647668 Román JR, Chamizo S, Roncero-Ramos B, Adessi A, De Philippis R, Cantón Y (2021) Overcoming field barriers to restore dryland soils by cyanobacteria inoculation. Soil Tillage Res 207:104799. https://doi.org/10.1016/j.still.2020.104799 Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote KJ, Folberth C, Glotter M, Khabarov N, Neumann K, Piontek F, Pugh TAM, Schmid E, Stehfest E, Yang H, Jones JW (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci USA 111:3268–3273. https://doi.org/10.1073/pnas.1222463110 Sadeghi SH, Kheirfam H, Homaee M, Darki BZ, Vafakhah M (2017) Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil till Res 171:35–41. https://doi.org/10.1016/j.still.2017.04.007 Sadeghi SH, Kheirfam H, Zarei Darki B (2020) Controlling runoff generation and soil loss from field experimental plots through inoculating cyanobacteria. J Hydrol 585:124814. https://doi.org/10.1016/j.jhydrol.2020.124814 Sadeghi SH, Satri MS, Kheirfam H, Darki BZ (2020) Runoff and soil loss from small plots of erosion-prone marl soil inoculated with bacteria and cyanobacteria under real conditions. Eur J Soil Biol 101:103214. https://doi.org/10.1016/j.ejsobi.2020.103214 Sanyal S, Chakrabarti B, Prasanna R, Bhatia A, Kumar SN, Purakayastha TJ, Joshi R, Sharma A (2022) Influence of cyanobacterial inoculants, elevated carbon dioxide, and temperature on plant and soil nitrogen in soybean. J Basic Microbiol 62:1216–1228. https://doi.org/10.1002/jobm.202200046 Six J, Frey SD, Thiet RK, Batten KM (2006) Bacterial and fungal contributions to carbon sequestration in agroecosystems. Soil Sci Soc Am J 70:555–569. https://doi.org/10.2136/sssaj2004.0347 Steenwerth KL, Jackson LE, Calderón FJ, Scow KM, Rolston DE (2005) Response of microbial community composition and activity in agricultural and grassland soils after a simulated rainfall. Soil Biol Biochem 37:2249–2262. https://doi.org/10.1016/j.soilbio.2005.02.038 Suleiman AKA, Lourenço KS, Clark C, Luz RL, da Silva GHR, Vet LEM, Cantarella H, Fernandes TV, Kuramae EE (2020) From toilet to agriculture: fertilization with microalgal biomass from wastewater impacts the soil and rhizosphere active microbiomes, greenhouse gas emissions and plant growth. Resour Conserv Recycl 161:104924. https://doi.org/10.1016/j.resconrec.2020.104924 Tabatabai MA (1994) Soil enzymes. In: Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai A, Wollum A (Eds) Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5.2, SSSA Book Series. Soil Science Society of America, Inc., Madison, pp 775–833. https://doi.org/10.2136/sssabookser5.2.c37 Taira H, Baba J, Togashi S, Berdiyar J, Yashima M, Inubushi K (2021) Chemical characteristics of degraded soils in Uzbekistan and remediation by cyanobacteria. Nutr Cycl Agroecosyst 120:193–203. https://doi.org/10.1007/s10705-021-10140-x Trivedi P, Delgado-Baquerizo M, Anderson IC, Singh BK (2016) Response of soil properties and microbial communities to agriculture: implications for primary productivity and soil health indicators. Front Plant Sci 7:990. https://doi.org/10.3389/fpls.2016.00990 Triveni S, Prasanna R, Kumar A, Bidyarani N, Singh R, Saxena AK (2015) Evaluating the promise of Trichoderma and Anabaena based biofilms as multifunctional agents in Macrophomina phaseolina-infected cotton crop. Biocontrol Sci Technol 25:656–670. https://doi.org/10.1080/09583157.2015.1006171 Truong THH, Marschner P (2018) Addition of residues with different C/N ratio in soil over time individually or as mixes-effect on nutrient availability and microbial biomass depends on amendment rate and frequency. J Soil Sci Plant Nutr 18:1157–1172. https://doi.org/10.4067/s0718-95162018005003401 Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring microbial biomass C. Soil Biol Biochem 19:703–707. https://doi.org/10.1016/0038-0717(87)90052-6 Wang J, Zhang P, Bao JT, Zhao JC, Song G, Yang HT, Huang L, He MZ, Li XR (2020) Comparison of cyanobacterial communities in temperate deserts: a cue for artificial inoculation of biological soil crusts. Sci Total Environ 745:140970. https://doi.org/10.1016/j.scitotenv.2020.140970 Wardle DA, Parkinson D (1990) Interactions between microclimatic variables and the soil microbial biomass. Biol Fertil Soils 9:273–280. https://doi.org/10.1007/BF00336239 Weyers SL, Johnson JMF, Archer DW (2013) Assessment of multiple management systems in the upper Midwest. Agron J 105:1665–1675. https://doi.org/10.2134/agronj2013.0101 Willson TC, Paul EA, Harwood RR (2001) Biologically active soil organic matter fractions in sustainable cropping systems. Appl Soil Ecol 16:63–76. https://doi.org/10.1016/S0929-1393(00)00077-9 Xu S, Chen X, Zhuang J (2019) Opposite influences of mineral-associated and dissolved organic matter on the transport of hydroxyapatite nanoparticles through soil and aggregates. Environ Res 171:153–160. https://doi.org/10.1016/j.envres.2019.01.020 Yu J, Glazer N, Steinberger Y (2014) Carbon utilization, microbial biomass, and respiration in biological soil crusts in the Negev Desert. Biol Fertil Soils 50:285–293. https://doi.org/10.1007/s00374-013-0856-9 Zhang B, Zhang Y, Su Y, Wang J, Zhang J (2013) Responses of microalgal-microbial biomass and enzyme activities of biological soil crusts to moisture and inoculated Microcoleus vaginatus gradients. Arid L Res Manag 27:216–230. https://doi.org/10.1080/15324982.2012.754514 Zhang K, Wang K, Li M, Gao N, Liu D, Chen Y (2021) Depth-related response of soil enzyme activity to cyanobacteria-dominated crusts along a precipitation gradient. L Degrad Dev 32:4183–4192. https://doi.org/10.1002/ldr.4024 Zsolnay A, Steindl H (1991) Geovariability and biodegradability of the water-extractable organic material in an agricultural soil. Soil Biol Biochem 23:1077–1082. https://doi.org/10.1016/0038-0717(91)90047-N