Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis

Cells - Tập 11 Số 13 - Trang 2067
Ryan M. Judy1, Connor J. Sheedy1, Brooke M. Gardner1
1Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA 93106, USA

Tóm tắt

The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.

Từ khóa


Tài liệu tham khảo

2010, Peroxisome Diversity and Evolution, Philos. Trans. R. Soc. B Biol. Sci., 365, 765, 10.1098/rstb.2009.0240

Jansen, 2021, Comparative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins, Front. Cell Dev. Biol., 9, 654163, 10.3389/fcell.2021.654163

Nordgren, 2014, Peroxisomal Metabolism and Oxidative Stress, Biochimie, 98, 56, 10.1016/j.biochi.2013.07.026

Goldman, 1978, Biogenesis of Peroxisomes: Intracellular Site of Synthesis of Catalase and Uricase, Proc. Natl. Acad. Sci. USA, 75, 5066, 10.1073/pnas.75.10.5066

Gurvitz, 2006, The Biochemistry of Oleate Induction: Transcriptional Upregulation and Peroxisome Proliferation, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1763, 1392, 10.1016/j.bbamcr.2006.07.011

Schrader, 2016, Proliferation and Fission of Peroxisomes—An Update, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1863, 971, 10.1016/j.bbamcr.2015.09.024

Gould, 1992, Development of the Yeast Pichia Pastoris as a Model Organism for a Genetic and Molecular Analysis of Peroxisome Assembly, Yeast, 8, 613, 10.1002/yea.320080805

Mukherji, 2014, Mechanisms of Organelle Biogenesis Govern Stochastic Fluctuations in Organelle Abundance, eLife, 3, e02678, 10.7554/eLife.02678

Saffian, 2012, ATP-Dependent Assembly of the Heteromeric Pex1p-Pex6p-Complex of the Peroxisomal Matrix Protein Import Machinery, J. Struct. Biol., 179, 126, 10.1016/j.jsb.2012.06.002

Birschmann, 2005, Structural and Functional Analysis of the Interaction of the AAA-Peroxins Pex1p and Pex6p, FEBS J., 272, 47, 10.1111/j.1432-1033.2004.04393.x

Tamura, 2006, Dynamic and Functional Assembly of the AAA Peroxins, Pex1p and Pex6p, and Their Membrane Receptor Pex26p, J. Biol. Chem., 281, 27693, 10.1074/jbc.M605159200

Matsumoto, 2003, The Pathogenic Peroxin Pex26p Recruits the Pex1p–Pex6p AAA ATPase Complexes to Peroxisomes, Nat. Cell Biol., 5, 454, 10.1038/ncb982

Kiel, 2006, PEX Genes in Fungal Genomes: Common, Rare or Redundant, Traffic, 7, 1291, 10.1111/j.1600-0854.2006.00479.x

Oliveira, 2003, The Energetics of Pex5p-Mediated Peroxisomal Protein Import, J. Biol. Chem., 278, 39483, 10.1074/jbc.M305089200

Romano, 2019, Peroxisome Protein Import Recapitulated in Xenopus Egg Extracts, J. Cell Biol., 218, 2021, 10.1083/jcb.201901152

Law, 2017, The Peroxisomal AAA ATPase Complex Prevents Pexophagy and Development of Peroxisome Biogenesis Disorders, Autophagy, 13, 868, 10.1080/15548627.2017.1291470

Nuttall, 2014, Deficiency of the Exportomer Components Pex1, Pex6, and Pex15 Causes Enhanced Pexophagy in Saccharomyces Cerevisiae, Autophagy, 10, 835, 10.4161/auto.28259

Yu, 2022, The Peroxisomal Exportomer Directly Inhibits Phosphoactivation of the Pexophagy Receptor Atg36 to Suppress Pexophagy in Yeast, eLife, 11, e74531, 10.7554/eLife.74531

Waterham, 2012, Genetics and Molecular Basis of Human Peroxisome Biogenesis Disorders, Biochim. Biophys. Acta BBA-Mol. Basis Dis., 1822, 1430, 10.1016/j.bbadis.2012.04.006

Waterham, 2016, Human Disorders of Peroxisome Metabolism and Biogenesis, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1863, 922, 10.1016/j.bbamcr.2015.11.015

Kim, 2006, The Origin and Maintenance of Mammalian Peroxisomes Involves a de Novo PEX16-Dependent Pathway from the ER, J. Cell Biol., 173, 521, 10.1083/jcb.200601036

Motley, 2007, Yeast Peroxisomes Multiply by Growth and Division, J. Cell Biol., 178, 399, 10.1083/jcb.200702167

Hoepfner, 2005, Contribution of the Endoplasmic Reticulum to Peroxisome Formation, Cell, 122, 85, 10.1016/j.cell.2005.04.025

Thoms, 2012, Peroxisome Formation Requires the Endoplasmic Reticulum Channel Protein Sec61: ER Translocon Requirement for Peroxisome Formation, Traffic, 13, 599, 10.1111/j.1600-0854.2011.01324.x

Schuldiner, 2008, The GET Complex Mediates Insertion of Tail-Anchored Proteins into the ER Membrane, Cell, 134, 634, 10.1016/j.cell.2008.06.025

Braakman, 2010, Peroxisomal Membrane Proteins Insert into the Endoplasmic Reticulum, Mol. Biol. Cell, 21, 2057, 10.1091/mbc.e10-02-0082

Lam, 2010, A Vesicle Carrier That Mediates Peroxisome Protein Traffic from the Endoplasmic Reticulum, Proc. Natl. Acad. Sci. USA, 107, 21523, 10.1073/pnas.1013397107

Agrawal, 2016, Distinct Requirements for Intra-ER Sorting and Budding of Peroxisomal Membrane Proteins from the ER, J. Cell Biol., 212, 335, 10.1083/jcb.201506141

Gent, 2012, Biochemically Distinct Vesicles from the Endoplasmic Reticulum Fuse to Form Peroxisomes, Cell, 149, 397, 10.1016/j.cell.2012.01.054

Sugiura, 2017, Newly Born Peroxisomes Are a Hybrid of Mitochondrial and ER-Derived Pre-Peroxisomes, Nature, 542, 251, 10.1038/nature21375

Motley, 2015, Reevaluation of the Role of Pex1 and Dynamin-Related Proteins in Peroxisome Membrane Biogenesis, J. Cell Biol., 211, 1041, 10.1083/jcb.201412066

Knoops, 2015, Yeast Pex1 Cells Contain Peroxisomal Ghosts That Import Matrix Proteins upon Reintroduction of Pex1, J. Cell Biol., 211, 955, 10.1083/jcb.201506059

Raychaudhuri, 2008, Nonvesicular Phospholipid Transfer between Peroxisomes and the Endoplasmic Reticulum, Proc. Natl. Acad. Sci. USA, 105, 15785, 10.1073/pnas.0808321105

Mahalingam, 2019, Peroxisome Biogenesis, Membrane Contact Sites, and Quality Control, EMBO Rep., 20, e46864, 10.15252/embr.201846864

Jones, 2001, Multiple Distinct Targeting Signals in Integral Peroxisomal Membrane Proteins, J. Cell Biol., 153, 1141, 10.1083/jcb.153.6.1141

Rottensteiner, 2004, Peroxisomal Membrane Proteins Contain Common Pex19p-Binding Sites That Are an Integral Part of Their Targeting Signals, Mol. Biol. Cell, 15, 12, 10.1091/mbc.e04-03-0188

Hettema, 2000, Saccharomyces Cerevisiae Pex3p and Pex19p Are Required for Proper Localization and Stability of Peroxisomal Membrane Proteins, EMBO J., 19, 223, 10.1093/emboj/19.2.223

Sacksteder, 2000, Pex19 Binds Multiple Peroxisomal Membrane Proteins, Is Predominantly Cytoplasmic, and Is Required for Peroxisome Membrane Synthesis, J. Cell Biol., 148, 931, 10.1083/jcb.148.5.931

Fang, 2004, PEX3 Functions as a PEX19 Docking Factor in the Import of Class I Peroxisomal Membrane Proteins, J. Cell Biol., 164, 863, 10.1083/jcb.200311131

Jones, 2004, PEX19 Is a Predominantly Cytosolic Chaperone and Import Receptor for Class 1 Peroxisomal Membrane Proteins, J. Cell Biol., 164, 57, 10.1083/jcb.200304111

Shibata, 2004, Domain Architecture and Activity of Human Pex19p, a Chaperone-like Protein for Intracellular Trafficking of Peroxisomal Membrane Proteins, J. Biol. Chem., 279, 38486, 10.1074/jbc.M402204200

Sato, 2010, Structural Basis for Docking of Peroxisomal Membrane Protein Carrier Pex19p onto Its Receptor Pex3p, EMBO J., 29, 4083, 10.1038/emboj.2010.293

Liu, 2016, Assembly of Peroxisomal Membrane Proteins via the Direct Pex19p-Pex3p Pathway, Traffic, 17, 433, 10.1111/tra.12376

Chen, 2014, Hydrophobic Handoff for Direct Delivery of Peroxisome Tail-Anchored Proteins, Nat. Commun., 5, 5790, 10.1038/ncomms6790

Motley, 2008, Dnm1p-Dependent Peroxisome Fission Requires Caf4p, Mdv1p and Fis1p, J. Cell Sci., 121, 1633, 10.1242/jcs.026344

Schrader, 1998, Expression of PEX11β Mediates Peroxisome Proliferation in the Absence of Extracellular Stimuli, J. Biol. Chem., 273, 29607, 10.1074/jbc.273.45.29607

Koch, 2005, A Role for Fis1 in Both Mitochondrial and Peroxisomal Fission in Mammalian Cells, Mol. Biol. Cell, 16, 5077, 10.1091/mbc.e05-02-0159

Koch, 2012, PEX11 Proteins Attract Mff and HFis1 to Coordinate Peroxisomal Fission, J. Cell Sci., 125, 3813

Kiel, 2011, Membrane Curvature during Peroxisome Fission Requires Pex11, EMBO J., 30, 5, 10.1038/emboj.2010.299

Mahalingam, 2021, Balancing the Opposing Principles That Govern Peroxisome Homeostasis, Trends Biochem. Sci., 46, 200, 10.1016/j.tibs.2020.09.006

Walton, 1995, Import of Stably Folded Proteins into Peroxisomes, Mol. Biol. Cell, 6, 675, 10.1091/mbc.6.6.675

Yang, 2001, Eci1p Uses a PTS1 to Enter Peroxisomes: Either Its Own or That of a Partner, Dci1p, Eur. J. Cell Biol., 80, 126, 10.1078/0171-9335-00144

DeLoache, 2016, Towards Repurposing the Yeast Peroxisome for Compartmentalizing Heterologous Metabolic Pathways, Nat. Commun., 7, 11152, 10.1038/ncomms11152

Antonenkov, 2004, The Rat Liver Peroxisomal Membrane Forms a Permeability Barrier for Cofactors but Not for Small Metabolites in Vitro, J. Cell Sci., 117, 5633, 10.1242/jcs.01485

Lingner, 2016, Identification of New Fungal Peroxisomal Matrix Proteins and Revision of the PTS1 Consensus: Peroxisomal Targeting Signal Type 1 (PTS1) in Yeast, Traffic, 17, 1110, 10.1111/tra.12426

Fung, 1991, Recognition of a Peroxisomal Tripeptide Entry Signal by the Glycosomes of Trypanosoma Brucei, Mol. Biochem. Parasitol., 45, 261, 10.1016/0166-6851(91)90093-L

Dodt, 1995, Mutations in the PTS1 Receptor Gene, PXR1, Define Complementation Group 2 of the Peroxisome Biogenesis Disorders, Nat. Genet., 9, 115, 10.1038/ng0295-115

Terlecky, 1995, The Pichia Pastoris Peroxisomal Protein PAS8p Is the Receptor for the C-Terminal Tripeptide Peroxisomal Targeting Signal, EMBO J., 14, 3627, 10.1002/j.1460-2075.1995.tb00032.x

Stanley, 2006, Recognition of a Functional Peroxisome Type 1 Target by the Dynamic Import Receptor Pex5p, Mol. Cell, 24, 653, 10.1016/j.molcel.2006.10.024

Carvalho, 2006, The N-Terminal Half of the Peroxisomal Cycling Receptor Pex5p Is a Natively Unfolded Domain, J. Mol. Biol., 356, 864, 10.1016/j.jmb.2005.12.002

Gaussmann, 2021, Membrane Interactions of the Peroxisomal Proteins PEX5 and PEX14, Front. Cell Dev. Biol., 9, 651449, 10.3389/fcell.2021.651449

Kerssen, 2004, Functional Similarity between the Peroxisomal PTS2 Receptor Binding Protein Pex18p and the N-Terminal Half of the PTS1 Receptor Pex5p, Mol. Cell. Biol., 24, 8895, 10.1128/MCB.24.20.8895-8906.2004

Klein, 2002, Saccharomyces Cerevisiae Acyl-CoA Oxidase Follows a Novel, Non-PTS1, Import Pathway into Peroxisomes That Is Dependent on Pex5p, J. Biol. Chem., 277, 25011, 10.1074/jbc.M203254200

Gunkel, 2004, Routing of Hansenula Polymorpha Alcohol Oxidase: An Alternative Peroxisomal Protein-Sorting Machinery, Mol. Biol. Cell, 15, 1347, 10.1091/mbc.e03-04-0258

Meinecke, 2010, The Peroxisomal Importomer Constitutes a Large and Highly Dynamic Pore, Nat. Cell Biol., 12, 273, 10.1038/ncb2027

Niederhoff, 2005, Yeast Pex14p Possesses Two Functionally Distinct Pex5p and One Pex7p Binding Sites, J. Biol. Chem., 280, 35571, 10.1074/jbc.M502460200

Dias, 2017, The Peroxisomal Matrix Protein Translocon Is a Large Cavity-Forming Protein Assembly into Which PEX5 Protein Enters to Release Its Cargo, J. Biol. Chem., 292, 15287, 10.1074/jbc.M117.805044

Gould, 1996, Pex13p Is an SH3 Protein of the Peroxisome Membrane and a Docking Factor for the Predominantly Cytoplasmic PTSl Receptor, J. Cell Biol., 135, 11, 10.1083/jcb.135.1.85

Urquhart, 2000, Interaction of Pex5p, the Type 1 Peroxisome Targeting Signal Receptor, with the Peroxisomal Membrane Proteins Pex14p and Pex13p, J. Biol. Chem., 275, 4127, 10.1074/jbc.275.6.4127

Deckers, 2010, Targeting of Pex8p to the Peroxisomal Importomer, Eur. J. Cell Biol., 89, 924, 10.1016/j.ejcb.2010.06.019

Otera, 2002, Peroxisomal Targeting Signal Receptor Pex5p Interacts with Cargoes and Import Machinery Components in a Spatiotemporally Differentiated Manner: Conserved Pex5p WXXXF/Y Motifs Are Critical for Matrix Protein Import, Mol. Cell. Biol., 22, 1639, 10.1128/MCB.22.6.1639-1655.2002

Agne, 2003, Pex8p: An Intraperoxisomal Organizer of the Peroxisomal Import Machinery, Mol. Cell, 11, 635, 10.1016/S1097-2765(03)00062-5

Reguenga, 2001, Characterization of the Mammalian Peroxisomal Import Machinery: Pex2p, Pex5p, Pex12p, AND Pex14p are subunits of the same protein assembly, J. Biol. Chem., 276, 29935, 10.1074/jbc.M104114200

Beck, 2015, Distinct Pores for Peroxisomal Import of PTS1 and PTS2 Proteins, Cell Rep., 13, 2126, 10.1016/j.celrep.2015.11.016

Shiozawa, 2009, Solution Structure of Human Pex5·Pex14·PTS1 Protein Complexes Obtained by Small Angle X-ray Scattering, J. Biol. Chem., 284, 25334, 10.1074/jbc.M109.002311

Williams, 2005, Saccharomyces Cerevisiae Pex14p Contains Two Independent Pex5p Binding Sites, Which Are Both Essential for PTS1 Protein Import, FEBS Lett., 579, 3416, 10.1016/j.febslet.2005.05.011

Pires, 2003, The ScPex13p SH3 Domain Exposes Two Distinct Binding Sites for Pex5p and Pex14p, J. Mol. Biol., 326, 1427, 10.1016/S0022-2836(03)00039-1

Girzalsky, 1999, Involvement of Pex13p in Pex14p Localization and Peroxisomal Targeting Signal 2–Dependent Protein Import into Peroxisomes, J. Cell Biol., 144, 1151, 10.1083/jcb.144.6.1151

Oliveira, 2002, Mammalian Pex14p: Membrane Topology and Characterisation of the Pex14p–Pex14p Interaction, Biochim. Biophys. Acta BBA-Biomembr., 1567, 13, 10.1016/S0005-2736(02)00635-1

Shimizu, 1999, The Peroxin Pex14p, J. Biol. Chem., 274, 12593, 10.1074/jbc.274.18.12593

Ferreira, 2019, Membrane Topologies of PEX 13 and PEX 14 Provide New Insights on the Mechanism of Protein Import into Peroxisomes, FEBS J., 286, 205, 10.1111/febs.14697

Skowyra, M., and Rapoport, T.A. (2022). Mechanism of PEX5-Mediated Protein Import into Peroxisomes. bioRxiv.

Kerssen, 2006, Membrane Association of the Cycling Peroxisome Import Receptor Pex5p, J. Biol. Chem., 281, 27003, 10.1074/jbc.M509257200

Rosenkranz, 2006, Functional Association of the AAA Complex and the Peroxisomal Importomer, FEBS J., 273, 3804, 10.1111/j.1742-4658.2006.05388.x

Marzioch, 1994, PAS7 Encodes a Novel Yeast Member of the WD-40 Protein Family Essential for Import of 3-Oxoacyl-CoA Thiolase, a PTS2-Containing Protein, into Peroxisomes, EMBO J., 13, 4908, 10.1002/j.1460-2075.1994.tb06818.x

Zhang, 1995, PEB1 (PAS7) in Saccharomyces Cerevisiae Encodes a Hydrophilic, Intra-Peroxisomal Protein That Is a Member of the WD Repeat Family and Is Essential for the Import of Thiolase into Peroxisomes, J. Cell Biol., 129, 65, 10.1083/jcb.129.1.65

Swinkels, 1991, A Novel, Cleavable Peroxisomal Targeting Signal at the Amino-Terminus of the Rat 3-Ketoacyl-CoA Thiolase, EMBO J., 10, 3255, 10.1002/j.1460-2075.1991.tb04889.x

Braverman, 1997, Human PEXl Encodes the Peroxisomal PTS2 Receptor and Is Responsible for Rhizomelic Chondrodysplasia Punctata, Nat. Genet., 15, 369, 10.1038/ng0497-369

Braverman, 1998, An Isoform of Pex5p, the Human PTS1 Receptor, Is Required for the Import of PTS2 Proteins into Peroxisomes, Hum. Mol. Genet., 7, 1195, 10.1093/hmg/7.8.1195

Matsumura, 2000, Disruption of the Interaction of the Longer Isoform of Pex5p, Pex5pL, with Pex7p Abolishes Peroxisome Targeting Signal Type 2 Protein Import in Mammals, J. Biol. Chem., 275, 21715, 10.1074/jbc.M000721200

Dodt, 2001, Domain Mapping of Human PEX5 Reveals Functional and Structural Similarities to Saccharomyces Cerevisiae Pex18p and Pex21p, J. Biol. Chem., 276, 41769, 10.1074/jbc.M106932200

Purdue, 1998, Pex18p and Pex21p, a Novel Pair of Related Peroxins Essential for Peroxisomal Targeting by the PTS2 Pathway, J. Cell Biol., 143, 1859, 10.1083/jcb.143.7.1859

Mukai, 2006, Molecular Mechanisms of Import of Peroxisome-Targeting Signal Type 2 (PTS2) Proteins by PTS2 Receptor Pex7p and PTS1 Receptor Pex5pL, J. Biol. Chem., 281, 37311, 10.1074/jbc.M607178200

Williams, 2006, Pex13p: Docking or Cargo Handling Protein?, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1763, 1585, 10.1016/j.bbamcr.2006.09.007

Freitas, 2011, PEX5 Protein Binds Monomeric Catalase Blocking Its Tetramerization and Releases It upon Binding the N-Terminal Domain of PEX14, J. Biol. Chem., 286, 40509, 10.1074/jbc.M111.287201

Wang, 2003, Physical Interactions of the Peroxisomal Targeting Signal 1 Receptor Pex5p, Studied by Fluorescence Correlation Spectroscopy, J. Biol. Chem., 278, 43340, 10.1074/jbc.M307789200

Rodrigues, 2014, A PEX7-Centered Perspective on the Peroxisomal Targeting Signal Type 2-Mediated Protein Import Pathway, Mol. Cell. Biol., 34, 2917, 10.1128/MCB.01727-13

Pedrosa, 2018, Peroxisomal Monoubiquitinated PEX5 Interacts with the AAA ATPases PEX1 and PEX6 and Is Unfolded during Its Dislocation into the Cytosol, J. Biol. Chem., 293, 11553, 10.1074/jbc.RA118.003669

Hensel, 2011, Cysteine-Dependent Ubiquitination of Pex18p Is Linked to Cargo Translocation across the Peroxisomal Membrane, J. Biol. Chem., 286, 43495, 10.1074/jbc.M111.286104

Subramani, 2007, A Conserved Cysteine Residue of Pichia Pastoris Pex20p Is Essential for Its Recycling from the Peroxisome to the Cytosol, J. Biol. Chem., 282, 7424, 10.1074/jbc.M611627200

Platta, 2004, Ubiquitination of the Peroxisomal Import Receptor Pex5p, Biochem. J., 384, 37, 10.1042/BJ20040572

Platta, 2005, Functional Role of the AAA Peroxins in Dislocation of the Cycling PTS1 Receptor Back to the Cytosol, Nat. Cell Biol., 7, 817, 10.1038/ncb1281

Kragt, 2005, The Saccharomyces Cerevisiae Peroxisomal Import Receptor Pex5p Is Monoubiquitinated in Wild Type Cells, J. Biol. Chem., 280, 7867, 10.1074/jbc.M413553200

Platta, 2009, Pex2 and Pex12 Function as Protein-Ubiquitin Ligases in Peroxisomal Protein Import, Mol. Cell. Biol., 29, 5505, 10.1128/MCB.00388-09

Wiebel, 1992, The Pas2 Protein Essential for Peroxisome Biogenesis Is Related to Ubiquitin-Conjugating Enzymes, Nature, 359, 73, 10.1038/359073a0

Grou, 2008, Members of the E2D (UbcH5) Family Mediate the Ubiquitination of the Conserved Cysteine of Pex5p, the Peroxisomal Import Receptor, J. Biol. Chem., 283, 14190, 10.1074/jbc.M800402200

Williams, 2007, A Conserved Cysteine Is Essential for Pex4p-Dependent Ubiquitination of the Peroxisomal Import Receptor Pex5p, J. Biol. Chem., 282, 22534, 10.1074/jbc.M702038200

Carvalho, 2007, Ubiquitination of Mammalian Pex5p, the Peroxisomal Import Receptor, J. Biol. Chem., 282, 31267, 10.1074/jbc.M706325200

McClellan, 2019, Cellular Functions and Molecular Mechanisms of Non-Lysine Ubiquitination, Open Biol., 9, 190147, 10.1098/rsob.190147

Apanasets, 2014, PEX5, the Shuttling Import Receptor for Peroxisomal Matrix Proteins, Is a Redox-Sensitive Protein, Traffic Cph. Den., 15, 94, 10.1111/tra.12129

Ma, 2013, Redox-Regulated Cargo Binding and Release by the Peroxisomal Targeting Signal Receptor, Pex5, J. Biol. Chem., 288, 27220, 10.1074/jbc.M113.492694

Williams, 2012, The Relevance of the Non-Canonical PTS1 of Peroxisomal Catalase, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1823, 1133, 10.1016/j.bbamcr.2012.04.006

Fujiki, 2021, A New Paradigm in Catalase Research, Trends Cell Biol., 31, 148, 10.1016/j.tcb.2020.12.006

Schliebs, 2010, Peroxisomal Protein Import and ERAD: Variations on a Common Theme, Nat. Rev. Mol. Cell Biol., 11, 885, 10.1038/nrm3008

Debelyy, 2011, Ubp15p, a Ubiquitin Hydrolase Associated with the Peroxisomal Export Machinery, J. Biol. Chem., 286, 28223, 10.1074/jbc.M111.238600

Grou, 2012, Identification of Ubiquitin-Specific Protease 9X (USP9X) as a Deubiquitinase Acting on Ubiquitin-Peroxin 5 (PEX5) Thioester Conjugate, J. Biol. Chem., 287, 12815, 10.1074/jbc.M112.340158

Zhao, 2007, Cellular Functions of NSF: Not Just SNAPs and SNAREs, FEBS Lett., 581, 2140, 10.1016/j.febslet.2007.03.032

Yedidi, 2017, AAA-ATPases in Protein Degradation, Front. Mol. Biosci., 4, 42, 10.3389/fmolb.2017.00042

Monroe, 2016, Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines, J. Mol. Biol., 428, 1897, 10.1016/j.jmb.2015.11.004

Kappel, 2012, Rlp24 Activates the AAA-ATPase Drg1 to Initiate Cytoplasmic Pre-60S Maturation, J. Cell Biol., 199, 771, 10.1083/jcb.201205021

Latterich, 1995, Membrane Fusion and the Cell Cycle: Cdc48p Participates in the Fusion of ER Membranes, Cell, 82, 885, 10.1016/0092-8674(95)90268-6

Erdmann, 1989, Isolation of Peroxisome-Deficient Mutants of Saccharomyces Cerevisiae, Proc. Natl. Acad. Sci. USA, 86, 5419, 10.1073/pnas.86.14.5419

Erdmann, 1991, PAS1, a Yeast Gene Required for Peroxisome Biogenesis, Encodes a Member of a Novel Family of Putative ATPases, Cell, 64, 499, 10.1016/0092-8674(91)90234-P

Hemrika, 1993, Sequence of the PAS8 Gene, the Product of Which Is Essential for Biogenesis of Peroxisomes in Saccharomyces Cerevisiae, Biochim. Biophys. Acta BBA-Gene Struct. Expr., 1216, 325, 10.1016/0167-4781(93)90166-B

Tsukamoto, 1995, Peroxisome Assembly Factor–2, a Putative ATPase Cloned by Functional Complementation on a Peroxisome–Deficient Mammalian Cell Mutant, Nat. Genet., 11, 395, 10.1038/ng1295-395

Reuber, 1997, Mutations in PEX1 Are the Most Common Cause of Peroxisome Biogenesis Disorders, Nat. Genet., 17, 445, 10.1038/ng1297-445

Portsteffen, 1997, Human PEX1 Is Mutated in Complementation Group 1 of the Peroxisome Biogenesis Disorders, Nat. Genet., 17, 449, 10.1038/ng1297-449

Meyer, 2012, Emerging Functions of the VCP/P97 AAA-ATPase in the Ubiquitin System, Nat. Cell Biol., 14, 117, 10.1038/ncb2407

Titorenko, 2000, Peroxisomal Membrane Fusion Requires Two Aaa Family Atpases, Pex1p and Pex6p, J. Cell Biol., 150, 881, 10.1083/jcb.150.4.881

Titorenko, 2000, Fusion of Small Peroxisomal Vesicles in Vitro Reconstructs an Early Step in the in Vivo Multistep Peroxisome Assembly Pathway of Yarrowia Lipolytica, J. Cell Biol., 148, 29, 10.1083/jcb.148.1.29

Collins, 2000, The Peroxisome Biogenesis Factors Pex4p, Pex22p, Pex1p, and Pex6p Act in the Terminal Steps of Peroxisomal Matrix Protein Import, Mol. Cell. Biol., 20, 7516, 10.1128/MCB.20.20.7516-7526.2000

Li, J., and Wang, W. (2021). Mechanisms and Functions of Pexophagy in Mammalian Cells. Cells, 10.

Kim, 2008, Ubiquitin Signals Autophagic Degradation of Cytosolic Proteins and Peroxisomes, Proc. Natl. Acad. Sci. USA, 105, 20567, 10.1073/pnas.0810611105

Li, 2017, Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy, Cell Rep., 20, 737, 10.1016/j.celrep.2017.06.077

Deosaran, 2012, NBR1 Acts as an Autophagy Receptor for Peroxisomes, J. Cell Sci., 126, 939

Sargent, 2016, PEX2 Is the E3 Ubiquitin Ligase Required for Pexophagy during Starvation, J. Cell Biol., 214, 677, 10.1083/jcb.201511034

Zhang, 2015, ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS, Nat. Cell Biol., 17, 1259, 10.1038/ncb3230

Nordgren, 2015, Export-Deficient Monoubiquitinated PEX5 Triggers Peroxisome Removal in SV40 Large T Antigen-Transformed Mouse Embryonic Fibroblasts, Autophagy, 11, 1326, 10.1080/15548627.2015.1061846

Gonzalez, 2018, A Pex1 Missense Mutation Improves Peroxisome Function in a Subset of Arabidopsis Pex6 Mutants without Restoring PEX5 Recycling, Proc. Natl. Acad. Sci. USA, 115, E3163, 10.1073/pnas.1721279115

Tamura, 2014, AAA Peroxins and Their Recruiter Pex26p Modulate the Interactions of Peroxins Involved in Peroxisomal Protein Import, J. Biol. Chem., 289, 24336, 10.1074/jbc.M114.588038

Seo, 2007, A Novel Role of Peroxin PEX6: Suppression of Aging Defects in Mitochondria, Aging Cell, 6, 405, 10.1111/j.1474-9726.2007.00291.x

Gardner, 2015, The Pex1/Pex6 Complex Is a Heterohexameric AAA + Motor with Alternating and Highly Coordinated Subunits, J. Mol. Biol., 427, 1375, 10.1016/j.jmb.2015.01.019

Blok, 2015, Unique Double-Ring Structure of the Peroxisomal Pex1/Pex6 ATPase Complex Revealed by Cryo-Electron Microscopy, Proc. Natl. Acad. Sci. USA, 112, E4017, 10.1073/pnas.1500257112

Ciniawsky, 2015, Molecular Snapshots of the Pex1/6 AAA+ Complex in Action, Nat. Commun., 6, 7331, 10.1038/ncomms8331

Jumper, 2021, Highly Accurate Protein Structure Prediction with AlphaFold, Nature, 596, 590, 10.1038/s41586-021-03819-2

Varadi, 2022, AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models, Nucleic Acids Res., 50, D439, 10.1093/nar/gkab1061

Pettersen, 2021, UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers, Protein Sci., 30, 70, 10.1002/pro.3943

Shiozawa, 2004, Structure of the N-Terminal Domain of PEX1 AAA-ATPase: Characterization of a putative adaptor-binding domain, J. Biol. Chem., 279, 50060, 10.1074/jbc.M407837200

Gates, 2020, Stairway to Translocation: AAA+ Motor Structures Reveal the Mechanisms of ATP-dependent Substrate Translocation, Protein Sci., 29, 407, 10.1002/pro.3743

Puchades, 2020, The Molecular Principles Governing the Activity and Functional Diversity of AAA+ Proteins, Nat. Rev. Mol. Cell Biol., 21, 43, 10.1038/s41580-019-0183-6

Glynn, 2009, Structures of Asymmetric ClpX Hexamers Reveal Nucleotide-Dependent Motions in a AAA+ Protein-Unfolding Machine, Cell, 139, 744, 10.1016/j.cell.2009.09.034

Wendler, 2012, Structure and Function of the AAA+ Nucleotide Binding Pocket, Biochim. Biophys. Acta, 1823, 2, 10.1016/j.bbamcr.2011.06.014

Bodnar, 2017, Toward an Understanding of the Cdc48/P97 ATPase, F1000Research, 6, 1318, 10.12688/f1000research.11683.1

Matveeva, 1997, N-Ethylmaleimide-Sensitive Fusion Protein Contains High and Low Affinity ATP-Binding Sites That Are Functionally Distinct, J. Biol. Chem., 272, 26413, 10.1074/jbc.272.42.26413

Konagurthu, 2006, MUSTANG: A Multiple Structural Alignment Algorithm, Proteins Struct. Funct. Bioinform., 64, 559, 10.1002/prot.20921

Zhao, 2015, Mechanistic Insights into the Recycling Machine of the SNARE Complex, Nature, 518, 61, 10.1038/nature14148

Bodnar, 2018, Structure of the Cdc48 ATPase with Its Ubiquitin-Binding Cofactor Ufd1–Npl4, Nat. Struct. Mol. Biol., 25, 616, 10.1038/s41594-018-0085-x

Gardner, 2018, The Peroxisomal AAA-ATPase Pex1/Pex6 Unfolds Substrates by Processive Threading, Nat. Commun., 9, 135, 10.1038/s41467-017-02474-4

Pan, 2021, Mechanistic Insight into Substrate Processing and Allosteric Inhibition of Human P97, Nat. Struct. Mol. Biol., 28, 614, 10.1038/s41594-021-00617-2

Cooney, 2019, Structure of the Cdc48 Segregase in the Act of Unfolding an Authentic Substrate, Science, 365, 502, 10.1126/science.aax0486

Han, 2017, The AAA ATPase Vps4 Binds ESCRT-III Substrates through a Repeating Array of Dipeptide-Binding Pockets, eLife, 6, e31324, 10.7554/eLife.31324

Goodall, 2018, Substrate-Engaged 26 S Proteasome Structures Reveal Mechanisms for ATP-Hydrolysis–Driven Translocation, Science, 362, eaav0725, 10.1126/science.aav0725

Puchades, 2017, Structure of the Mitochondrial Inner Membrane AAA+ Protease YME1 Gives Insight into Substrate Processing, Science, 358, eaao0464, 10.1126/science.aao0464

Lo, 2019, Cryo-EM Structure of the Essential Ribosome Assembly AAA-ATPase Rix7, Nat. Commun., 10, 513, 10.1038/s41467-019-08373-0

Yu, 2018, ATP Hydrolysis-Coupled Peptide Translocation Mechanism of Mycobacterium Tuberculosis ClpB, Proc. Natl. Acad. Sci. USA, 115, E9560, 10.1073/pnas.1810648115

Dong, 2019, Cryo-EM Structures and Dynamics of Substrate-Engaged Human 26S Proteasome, Nature, 565, 49, 10.1038/s41586-018-0736-4

Ripstein, 2017, Structure of a AAA+ Unfoldase in the Process of Unfolding Substrate, eLife, 6, e25754, 10.7554/eLife.25754

Martin, 2005, Rebuilt AAA + Motors Reveal Operating Principles for ATP-Fuelled Machines, Nature, 437, 1115, 10.1038/nature04031

Cordova, 2014, Stochastic but Highly Coordinated Protein Unfolding and Translocation by the ClpXP Proteolytic Machine, Cell, 158, 647, 10.1016/j.cell.2014.05.043

Beckwith, 2013, Reconstitution of the 26S Proteasome Reveals Functional Asymmetries in Its AAA+ Unfoldase, Nat. Struct. Mol. Biol., 20, 1164, 10.1038/nsmb.2659

Sauer, 2022, Structure and Function of ClpXP, a AAA+ Proteolytic Machine Powered by Probabilistic ATP Hydrolysis, Crit. Rev. Biochem. Mol. Biol., 57, 188, 10.1080/10409238.2021.1979461

Augustin, 2009, An Intersubunit Signaling Network Coordinates ATP Hydrolysis by M-AAA Proteases, Mol. Cell, 35, 574, 10.1016/j.molcel.2009.07.018

Mazal, 2021, Ultrafast Pore-Loop Dynamics in a AAA+ Machine Point to a Brownian-Ratchet Mechanism for Protein Translocation, Sci. Adv., 7, eabg4674, 10.1126/sciadv.abg4674

Olivares, 2014, Mechanochemical Basis of Protein Degradation by a Double-Ring AAA+ Machine, Nat. Struct. Mol. Biol., 21, 871, 10.1038/nsmb.2885

Lopez, 2020, Conformational Plasticity of the ClpAP AAA+ Protease Couples Protein Unfolding and Proteolysis, Nat. Struct. Mol. Biol., 27, 406, 10.1038/s41594-020-0409-5

Ripstein, 2020, A Processive Rotary Mechanism Couples Substrate Unfolding and Proteolysis in the ClpXP Degradation Machinery, eLife, 9, e52158, 10.7554/eLife.52158

Fei, 2020, Structures of the ATP-Fueled ClpXP Proteolytic Machine Bound to Protein Substrate, eLife, 9, e52774, 10.7554/eLife.52774

Olivares, 2011, Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine, Cell, 145, 257, 10.1016/j.cell.2011.03.036

Avellaneda, 2020, Processive Extrusion of Polypeptide Loops by a Hsp100 Disaggregase, Nature, 578, 317, 10.1038/s41586-020-1964-y

Han, 2019, Structure of Vps4 with Circular Peptides and Implications for Translocation of Two Polypeptide Chains by AAA+ ATPases, eLife, 8, e44071, 10.7554/eLife.44071

Sen, 2013, The ClpXP Protease Unfolds Substrates Using a Constant Rate of Pulling but Different Gears, Cell, 155, 636, 10.1016/j.cell.2013.09.022

Tan, 2016, Structures of the Double-Ring AAA ATPase Pex1–Pex6 Involved in Peroxisome Biogenesis, FEBS J., 283, 986, 10.1111/febs.13569

Yu, 1999, NSF N-Terminal Domain Crystal Structure: Models of NSF Function, Mol. Cell, 4, 97, 10.1016/S1097-2765(00)80191-4

Schindelin, 2017, The Interplay of Cofactor Interactions and Post-Translational Modifications in the Regulation of the AAA+ ATPase P97, Front. Mol. Biosci., 4, 21

Rosenzweig, 2015, ClpB N-Terminal Domain Plays a Regulatory Role in Protein Disaggregation, Proc. Natl. Acad. Sci. USA, 112, E6872, 10.1073/pnas.1512783112

Tzeng, 2021, Molecular Insights into Substrate Recognition and Discrimination by the N-Terminal Domain of Lon AAA+ Protease, eLife, 10, e64056, 10.7554/eLife.64056

Birschmann, 2003, Pex15p of Saccharomyces Cerevisiae Provides a Molecular Basis for Recruitment of the AAA Peroxin Pex6p to Peroxisomal Membranes, Mol. Biol. Cell, 14, 2226, 10.1091/mbc.e02-11-0752

Grimm, 2016, Nucleotide-Dependent Assembly of the Peroxisomal Receptor Export Complex, Sci. Rep., 6, 19838, 10.1038/srep19838

Schieferdecker, A., and Wendler, P. (2019). Structural Mapping of Missense Mutations in the Pex1/Pex6 Complex. Int. J. Mol. Sci., 20.

Elgersma, 1997, Overexpression of Pex15p, a Phosphorylated Peroxisomal Integral Membrane Protein Required for Peroxisome Assembly in S.Cerevisiae, Causes Proliferation of the Endoplasmic Reticulum Membrane, EMBO J., 16, 7326, 10.1093/emboj/16.24.7326

Goto, 2011, Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 Is a Peroxin That Recruits the PEX1-PEX6 Complex to Peroxisomes, Plant Cell, 23, 1573, 10.1105/tpc.110.080770

Miyata, 2005, Shuttling Mechanism of Peroxisome Targeting Signal Type 1 Receptor Pex5: ATP-Independent Import and ATP-Dependent Export, Mol. Cell. Biol., 25, 10822, 10.1128/MCB.25.24.10822-10832.2005

Weller, 2005, Alternative Splicing Suggests Extended Function of PEX26 in Peroxisome Biogenesis, Am. J. Hum. Genet., 76, 987, 10.1086/430637

Woidy, 2021, Edgetic Perturbations Contribute to Phenotypic Variability in PEX26 Deficiency, Front. Genet., 12, 726174, 10.3389/fgene.2021.726174

Guder, 2019, Isoform-Specific Domain Organization Determines Conformation and Function of the Peroxisomal Biogenesis Factor PEX26, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1866, 518, 10.1016/j.bbamcr.2018.10.013

Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., and Yim, J. (2022). Protein Complex Prediction with AlphaFold-Multimer. bioRxiv.

Furuki, 2006, Mutations in the Peroxin Pex26p Responsible for Peroxisome Biogenesis Disorders of Complementation Group 8 Impair Its Stability, Peroxisomal Localization, and Interaction with the Pex1p·Pex6p Complex, J. Biol. Chem., 281, 1317, 10.1074/jbc.M510044200

Halbach, 2006, Targeting of the Tail-Anchored Peroxisomal Membrane Proteins PEX26 and PEX15 Occurs through C-Terminal PEX19-Binding Sites, J. Cell Sci., 119, 2508, 10.1242/jcs.02979

Fokkema, 2011, LOVD v.2.0: The next Generation in Gene Variant Databases, Hum. Mutat., 32, 557, 10.1002/humu.21438

Krogh, 2001, Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes11Edited by F. Cohen, J. Mol. Biol., 305, 567, 10.1006/jmbi.2000.4315

Gautier, 2008, HELIQUEST: A Web Server to Screen Sequences with Specific -Helical Properties, Bioinformatics, 24, 2101, 10.1093/bioinformatics/btn392

Zhang, 2008, The “glutamate Switch” Provides a Link between ATPase Activity and Ligand Binding in AAA+ Proteins, Nat. Struct. Mol. Biol., 15, 1223, 10.1038/nsmb.1501

Weibezahn, 2003, Characterization of a Trap Mutant of the AAA+ Chaperone ClpB, J. Biol. Chem., 278, 32608, 10.1074/jbc.M303653200

Costello, 2017, Predicting the Targeting of Tail-Anchored Proteins to Subcellular Compartments in Mammalian Cells, J. Cell Sci., 130, 1675, 10.1242/jcs.200204

Matsumoto, 2003, Mutations in Novel Peroxin Gene PEX26 That Cause Peroxisome-Biogenesis Disorders of Complementation Group 8 Provide a Genotype-Phenotype Correlation, Am. J. Hum. Genet., 73, 233, 10.1086/377004

Dammai, 2001, The Human Peroxisomal Targeting Signal Receptor, Pex5p, Is Translocated into the Peroxisomal Matrix and Recycled to the Cytosol, Cell, 105, 187, 10.1016/S0092-8674(01)00310-5

Berner, 2018, Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin–Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path, Annu. Rev. Biochem., 87, 751, 10.1146/annurev-biochem-062917-012749

Schwerter, 2018, Receptor Recognition by the Peroxisomal AAA Complex Depends on the Presence of the Ubiquitin Moiety and Is Mediated by Pex1p, J. Biol. Chem., 293, 15458, 10.1074/jbc.RA118.003936

Hagmann, 2018, Chemically Monoubiquitinated PEX5 Binds to the Components of the Peroxisomal Docking and Export Machinery, Sci. Rep., 8, 16014, 10.1038/s41598-018-34200-5

Miyata, 2012, AWP1/ZFAND6 Functions in Pex5 Export by Interacting with Cys-Monoubiquitinated Pex5 and Pex6 AAA ATPase, Traffic, 13, 168, 10.1111/j.1600-0854.2011.01298.x

Pedrosa, A.G., Francisco, T., Ferreira, M.J., Rodrigues, T.A., Barros-Barbosa, A., and Azevedo, J.E. (2019). A Mechanistic Perspective on PEX1 and PEX6, Two AAA+ Proteins of the Peroxisomal Protein Import Machinery. Int. J. Mol. Sci., 20.

Ji, 2022, Translocation of Polyubiquitinated Protein Substrates by the Hexameric Cdc48 ATPase, Mol. Cell, 82, 570, 10.1016/j.molcel.2021.11.033

Haslberger, 2008, Protein Disaggregation by the AAA+ Chaperone ClpB Involves Partial Threading of Looped Polypeptide Segments, Nat. Struct. Mol. Biol., 15, 641, 10.1038/nsmb.1425

Monroe, 2017, Structural Basis of Protein Translocation by the Vps4-Vta1 AAA ATPase, eLife, 6, e24487, 10.7554/eLife.24487

Yifrach, 2016, Characterization of Proteome Dynamics in Oleate Reveals a Novel Peroxisome Targeting Receptor, J. Cell Sci., 129, 4067, 10.1242/jcs.195255

Effelsberg, 2016, Pex9p Is a Novel Yeast Peroxisomal Import Receptor for PTS1-Proteins, J. Cell Sci., 129, 4057, 10.1242/jcs.195271

Tanaka, 2014, Hrr25 Triggers Selective Autophagy–Related Pathways by Phosphorylating Receptor Proteins, J. Cell Biol., 207, 91, 10.1083/jcb.201402128

Motley, 2012, Pex3-Anchored Atg36 Tags Peroxisomes for Degradation in Saccharomyces Cerevisiae, EMBO J., 31, 2852, 10.1038/emboj.2012.151

Steinberg, 2006, Peroxisome Biogenesis Disorders, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1763, 1733, 10.1016/j.bbamcr.2006.09.010

Santos, 1992, Peroxisome assembly mutations in humans: Structural heterogeneity in Zellweger syndrome, J. Cell. Physiol., 151, 103, 10.1002/jcp.1041510115

Santos, 1988, Peroxisomal Integral Membrane Proteins in Control and Zellweger Fibroblasts, J. Biol. Chem., 263, 10502, 10.1016/S0021-9258(19)81544-2

Soliman, 2018, Super-Resolution Imaging Reveals the Sub-Diffraction Phenotype of Zellweger Syndrome Ghosts and Wild-Type Peroxisomes, Sci. Rep., 8, 7809, 10.1038/s41598-018-24119-2

South, 1999, Peroxisome Synthesis in the Absence of Preexisting Peroxisomes, J. Cell Biol., 144, 255, 10.1083/jcb.144.2.255

Schrader, 2015, Peroxisome-Mitochondria Interplay and Disease, J. Inherit. Metab. Dis., 38, 681, 10.1007/s10545-015-9819-7

Kleinecke, 2017, Peroxisomal Dysfunctions Cause Lysosomal Storage and Axonal Kv1 Channel Redistribution in Peripheral Neuropathy, eLife, 6, e23332, 10.7554/eLife.23332

Berger, 2016, Peroxisomes in Brain Development and Function, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1863, 934, 10.1016/j.bbamcr.2015.12.005

Geisbrecht, 1998, Disruption of a PEX1–PEX6 Interaction Is the Most Common Cause of the Neurologic Disorders Zellweger Syndrome, Neonatal Adrenoleukodystrophy, and Infantile Refsum Disease, Proc. Natl. Acad. Sci. USA, 95, 8630, 10.1073/pnas.95.15.8630

Ratbi, 2015, Heimler Syndrome Is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6, Am. J. Hum. Genet., 97, 535, 10.1016/j.ajhg.2015.08.011

Klouwer, 2021, Autophagy Inhibitors Do Not Restore Peroxisomal Functions in Cells With the Most Common Peroxisome Biogenesis Defect, Front. Cell Dev. Biol., 9, 661298, 10.3389/fcell.2021.661298

Nazarko, 2017, Pexophagy Is Responsible for 65% of Cases of Peroxisome Biogenesis Disorders, Autophagy, 13, 991, 10.1080/15548627.2017.1291480

Ebberink, 2011, Genetic Classification and Mutational Spectrum of More than 600 Patients with a Zellweger Syndrome Spectrum Disorder, Hum. Mutat., 32, 59, 10.1002/humu.21388

Walter, 2001, Disorders of Peroxisome Biogenesis Due to Mutations in PEX1: Phenotypes and PEX1 Protein Levels, Am. J. Hum. Genet., 69, 35, 10.1086/321265

Maxwell, 2002, Novel PEX1 Mutations and Genotype–Phenotype Correlations in Australasian Peroxisome Biogenesis Disorder Patients, Hum. Mutat., 20, 342, 10.1002/humu.10128

Argyriou, 2019, A Longitudinal Study of Retinopathy in the PEX1-Gly844Asp Mouse Model for Mild Zellweger Spectrum Disorder, Exp. Eye Res., 186, 107713, 10.1016/j.exer.2019.107713

Twomey, 2019, Substrate Processing by the Cdc48 ATPase Complex Is Initiated by Ubiquitin Unfolding, Science, 365, eaax1033, 10.1126/science.aax1033

Nashiro, 2011, Recruiting Mechanism of the AAA Peroxins, Pex1p and Pex6p, to Pex26p on the Peroxisomal Membrane, Traffic, 12, 774, 10.1111/j.1600-0854.2011.01182.x

Zhang, 2010, Recovery of PEX1-Gly843Asp Peroxisome Dysfunction by Small-Molecule Compounds, Proc. Natl. Acad. Sci. USA, 107, 5569, 10.1073/pnas.0914960107

MacLean, 2019, Zellweger Spectrum Disorder Patient–Derived Fibroblasts with the PEX1-Gly843Asp Allele Recover Peroxisome Functions in Response to Flavonoids, J. Cell. Biochem., 120, 3243, 10.1002/jcb.27591

Banerjee, 2016, 2.3 Å Resolution Cryo-EM Structure of Human P97 and Mechanism of Allosteric Inhibition, Science, 351, 871, 10.1126/science.aad7974

Zhang, 2019, Identification of NMS-873, an Allosteric and Specific P97 Inhibitor, as a Broad Antiviral against Both Influenza A and B Viruses, Eur. J. Pharm. Sci., 133, 86, 10.1016/j.ejps.2019.03.020

Zhou, 2015, Discovery of a First-in-Class, Potent, Selective, and Orally Bioavailable Inhibitor of the P97 AAA ATPase (CB-5083), J. Med. Chem., 58, 9480, 10.1021/acs.jmedchem.5b01346

Dephoure, 2008, A Quantitative Atlas of Mitotic Phosphorylation, Proc. Natl. Acad. Sci. USA, 105, 10762, 10.1073/pnas.0805139105

Matsuoka, 2007, ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage, Science, 316, 1160, 10.1126/science.1140321

Dinkel, 2011, Phospho.ELM: A Database of Phosphorylation Sites--Update 2011, Nucleic Acids Res., 39, D261, 10.1093/nar/gkq1104

Park, 2021, Depletion of HNRNPA1 Induces Peroxisomal Autophagy by Regulating PEX1 Expression, Biochem. Biophys. Res. Commun., 545, 69, 10.1016/j.bbrc.2021.01.083

Tomko, 2011, Order of the Proteasomal ATPases and Eukaryotic Proteasome Assembly, Cell Biochem. Biophys., 60, 13, 10.1007/s12013-011-9178-4

Zavodszky, 2021, Identification of a Quality-Control Factor That Monitors Failures during Proteasome Assembly, Science, 373, 998, 10.1126/science.abc6500

Narayan, 2016, Deep Proteome Analysis Identifies Age-Related Processes in C. Elegans, Cell Syst., 3, 144, 10.1016/j.cels.2016.06.011

Uzor, 2020, Aging Lowers PEX5 Levels in Cortical Neurons in Male and Female Mouse Brains, Mol. Cell. Neurosci., 107, 103536, 10.1016/j.mcn.2020.103536

Huang, K., Chen, W., Zhu, F., Li, P.W.-L., Kapahi, P., and Bai, H. (2019). RiboTag Translatomic Profiling of Drosophila Oenocytes under Aging and Induced Oxidative Stress. BMC Genom., 20.

Huang, K., Kim, J., Vo, P., Miao, T., and Bai, H. (2020). Peroxisome Import Stress Impairs Ribosome Biogenesis and Induces Integrative Stress Response through EIF2α Phosphorylation. bioRxiv.

Dixit, 2010, Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity, Cell, 141, 668, 10.1016/j.cell.2010.04.018

Grewal, 2021, Peroxisome Compartmentalization of a Toxic Enzyme Improves Alkaloid Production, Nat. Chem. Biol., 17, 96, 10.1038/s41589-020-00668-4

Wajn, 2020, Transforming Yeast Peroxisomes into Microfactories for the Efficient Production of High-Value Isoprenoids, Proc. Natl. Acad. Sci. USA, 117, 31789, 10.1073/pnas.2013968117

Liu, 2020, The Yeast Peroxisome: A Dynamic Storage Depot and Subcellular Factory for Squalene Overproduction, Metab. Eng., 57, 151, 10.1016/j.ymben.2019.11.001