Insights into the Structure and Function of the Pex1/Pex6 AAA-ATPase in Peroxisome Homeostasis
Tóm tắt
The AAA-ATPases Pex1 and Pex6 are required for the formation and maintenance of peroxisomes, membrane-bound organelles that harbor enzymes for specialized metabolism. Together, Pex1 and Pex6 form a heterohexameric AAA-ATPase capable of unfolding substrate proteins via processive threading through a central pore. Here, we review the proposed roles for Pex1/Pex6 in peroxisome biogenesis and degradation, discussing how the unfolding of potential substrates contributes to peroxisome homeostasis. We also consider how advances in cryo-EM, computational structure prediction, and mechanisms of related ATPases are improving our understanding of how Pex1/Pex6 converts ATP hydrolysis into mechanical force. Since mutations in PEX1 and PEX6 cause the majority of known cases of peroxisome biogenesis disorders such as Zellweger syndrome, insights into Pex1/Pex6 structure and function are important for understanding peroxisomes in human health and disease.
Từ khóa
Tài liệu tham khảo
2010, Peroxisome Diversity and Evolution, Philos. Trans. R. Soc. B Biol. Sci., 365, 765, 10.1098/rstb.2009.0240
Jansen, 2021, Comparative Genomics of Peroxisome Biogenesis Proteins: Making Sense of the PEX Proteins, Front. Cell Dev. Biol., 9, 654163, 10.3389/fcell.2021.654163
Nordgren, 2014, Peroxisomal Metabolism and Oxidative Stress, Biochimie, 98, 56, 10.1016/j.biochi.2013.07.026
Goldman, 1978, Biogenesis of Peroxisomes: Intracellular Site of Synthesis of Catalase and Uricase, Proc. Natl. Acad. Sci. USA, 75, 5066, 10.1073/pnas.75.10.5066
Gurvitz, 2006, The Biochemistry of Oleate Induction: Transcriptional Upregulation and Peroxisome Proliferation, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1763, 1392, 10.1016/j.bbamcr.2006.07.011
Schrader, 2016, Proliferation and Fission of Peroxisomes—An Update, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1863, 971, 10.1016/j.bbamcr.2015.09.024
Gould, 1992, Development of the Yeast Pichia Pastoris as a Model Organism for a Genetic and Molecular Analysis of Peroxisome Assembly, Yeast, 8, 613, 10.1002/yea.320080805
Mukherji, 2014, Mechanisms of Organelle Biogenesis Govern Stochastic Fluctuations in Organelle Abundance, eLife, 3, e02678, 10.7554/eLife.02678
Saffian, 2012, ATP-Dependent Assembly of the Heteromeric Pex1p-Pex6p-Complex of the Peroxisomal Matrix Protein Import Machinery, J. Struct. Biol., 179, 126, 10.1016/j.jsb.2012.06.002
Birschmann, 2005, Structural and Functional Analysis of the Interaction of the AAA-Peroxins Pex1p and Pex6p, FEBS J., 272, 47, 10.1111/j.1432-1033.2004.04393.x
Tamura, 2006, Dynamic and Functional Assembly of the AAA Peroxins, Pex1p and Pex6p, and Their Membrane Receptor Pex26p, J. Biol. Chem., 281, 27693, 10.1074/jbc.M605159200
Matsumoto, 2003, The Pathogenic Peroxin Pex26p Recruits the Pex1p–Pex6p AAA ATPase Complexes to Peroxisomes, Nat. Cell Biol., 5, 454, 10.1038/ncb982
Kiel, 2006, PEX Genes in Fungal Genomes: Common, Rare or Redundant, Traffic, 7, 1291, 10.1111/j.1600-0854.2006.00479.x
Oliveira, 2003, The Energetics of Pex5p-Mediated Peroxisomal Protein Import, J. Biol. Chem., 278, 39483, 10.1074/jbc.M305089200
Romano, 2019, Peroxisome Protein Import Recapitulated in Xenopus Egg Extracts, J. Cell Biol., 218, 2021, 10.1083/jcb.201901152
Law, 2017, The Peroxisomal AAA ATPase Complex Prevents Pexophagy and Development of Peroxisome Biogenesis Disorders, Autophagy, 13, 868, 10.1080/15548627.2017.1291470
Nuttall, 2014, Deficiency of the Exportomer Components Pex1, Pex6, and Pex15 Causes Enhanced Pexophagy in Saccharomyces Cerevisiae, Autophagy, 10, 835, 10.4161/auto.28259
Yu, 2022, The Peroxisomal Exportomer Directly Inhibits Phosphoactivation of the Pexophagy Receptor Atg36 to Suppress Pexophagy in Yeast, eLife, 11, e74531, 10.7554/eLife.74531
Waterham, 2012, Genetics and Molecular Basis of Human Peroxisome Biogenesis Disorders, Biochim. Biophys. Acta BBA-Mol. Basis Dis., 1822, 1430, 10.1016/j.bbadis.2012.04.006
Waterham, 2016, Human Disorders of Peroxisome Metabolism and Biogenesis, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1863, 922, 10.1016/j.bbamcr.2015.11.015
Kim, 2006, The Origin and Maintenance of Mammalian Peroxisomes Involves a de Novo PEX16-Dependent Pathway from the ER, J. Cell Biol., 173, 521, 10.1083/jcb.200601036
Motley, 2007, Yeast Peroxisomes Multiply by Growth and Division, J. Cell Biol., 178, 399, 10.1083/jcb.200702167
Hoepfner, 2005, Contribution of the Endoplasmic Reticulum to Peroxisome Formation, Cell, 122, 85, 10.1016/j.cell.2005.04.025
Thoms, 2012, Peroxisome Formation Requires the Endoplasmic Reticulum Channel Protein Sec61: ER Translocon Requirement for Peroxisome Formation, Traffic, 13, 599, 10.1111/j.1600-0854.2011.01324.x
Schuldiner, 2008, The GET Complex Mediates Insertion of Tail-Anchored Proteins into the ER Membrane, Cell, 134, 634, 10.1016/j.cell.2008.06.025
Braakman, 2010, Peroxisomal Membrane Proteins Insert into the Endoplasmic Reticulum, Mol. Biol. Cell, 21, 2057, 10.1091/mbc.e10-02-0082
Lam, 2010, A Vesicle Carrier That Mediates Peroxisome Protein Traffic from the Endoplasmic Reticulum, Proc. Natl. Acad. Sci. USA, 107, 21523, 10.1073/pnas.1013397107
Agrawal, 2016, Distinct Requirements for Intra-ER Sorting and Budding of Peroxisomal Membrane Proteins from the ER, J. Cell Biol., 212, 335, 10.1083/jcb.201506141
Gent, 2012, Biochemically Distinct Vesicles from the Endoplasmic Reticulum Fuse to Form Peroxisomes, Cell, 149, 397, 10.1016/j.cell.2012.01.054
Sugiura, 2017, Newly Born Peroxisomes Are a Hybrid of Mitochondrial and ER-Derived Pre-Peroxisomes, Nature, 542, 251, 10.1038/nature21375
Motley, 2015, Reevaluation of the Role of Pex1 and Dynamin-Related Proteins in Peroxisome Membrane Biogenesis, J. Cell Biol., 211, 1041, 10.1083/jcb.201412066
Knoops, 2015, Yeast Pex1 Cells Contain Peroxisomal Ghosts That Import Matrix Proteins upon Reintroduction of Pex1, J. Cell Biol., 211, 955, 10.1083/jcb.201506059
Raychaudhuri, 2008, Nonvesicular Phospholipid Transfer between Peroxisomes and the Endoplasmic Reticulum, Proc. Natl. Acad. Sci. USA, 105, 15785, 10.1073/pnas.0808321105
Mahalingam, 2019, Peroxisome Biogenesis, Membrane Contact Sites, and Quality Control, EMBO Rep., 20, e46864, 10.15252/embr.201846864
Jones, 2001, Multiple Distinct Targeting Signals in Integral Peroxisomal Membrane Proteins, J. Cell Biol., 153, 1141, 10.1083/jcb.153.6.1141
Rottensteiner, 2004, Peroxisomal Membrane Proteins Contain Common Pex19p-Binding Sites That Are an Integral Part of Their Targeting Signals, Mol. Biol. Cell, 15, 12, 10.1091/mbc.e04-03-0188
Hettema, 2000, Saccharomyces Cerevisiae Pex3p and Pex19p Are Required for Proper Localization and Stability of Peroxisomal Membrane Proteins, EMBO J., 19, 223, 10.1093/emboj/19.2.223
Sacksteder, 2000, Pex19 Binds Multiple Peroxisomal Membrane Proteins, Is Predominantly Cytoplasmic, and Is Required for Peroxisome Membrane Synthesis, J. Cell Biol., 148, 931, 10.1083/jcb.148.5.931
Fang, 2004, PEX3 Functions as a PEX19 Docking Factor in the Import of Class I Peroxisomal Membrane Proteins, J. Cell Biol., 164, 863, 10.1083/jcb.200311131
Jones, 2004, PEX19 Is a Predominantly Cytosolic Chaperone and Import Receptor for Class 1 Peroxisomal Membrane Proteins, J. Cell Biol., 164, 57, 10.1083/jcb.200304111
Shibata, 2004, Domain Architecture and Activity of Human Pex19p, a Chaperone-like Protein for Intracellular Trafficking of Peroxisomal Membrane Proteins, J. Biol. Chem., 279, 38486, 10.1074/jbc.M402204200
Sato, 2010, Structural Basis for Docking of Peroxisomal Membrane Protein Carrier Pex19p onto Its Receptor Pex3p, EMBO J., 29, 4083, 10.1038/emboj.2010.293
Liu, 2016, Assembly of Peroxisomal Membrane Proteins via the Direct Pex19p-Pex3p Pathway, Traffic, 17, 433, 10.1111/tra.12376
Chen, 2014, Hydrophobic Handoff for Direct Delivery of Peroxisome Tail-Anchored Proteins, Nat. Commun., 5, 5790, 10.1038/ncomms6790
Motley, 2008, Dnm1p-Dependent Peroxisome Fission Requires Caf4p, Mdv1p and Fis1p, J. Cell Sci., 121, 1633, 10.1242/jcs.026344
Schrader, 1998, Expression of PEX11β Mediates Peroxisome Proliferation in the Absence of Extracellular Stimuli, J. Biol. Chem., 273, 29607, 10.1074/jbc.273.45.29607
Koch, 2005, A Role for Fis1 in Both Mitochondrial and Peroxisomal Fission in Mammalian Cells, Mol. Biol. Cell, 16, 5077, 10.1091/mbc.e05-02-0159
Koch, 2012, PEX11 Proteins Attract Mff and HFis1 to Coordinate Peroxisomal Fission, J. Cell Sci., 125, 3813
Kiel, 2011, Membrane Curvature during Peroxisome Fission Requires Pex11, EMBO J., 30, 5, 10.1038/emboj.2010.299
Mahalingam, 2021, Balancing the Opposing Principles That Govern Peroxisome Homeostasis, Trends Biochem. Sci., 46, 200, 10.1016/j.tibs.2020.09.006
Walton, 1995, Import of Stably Folded Proteins into Peroxisomes, Mol. Biol. Cell, 6, 675, 10.1091/mbc.6.6.675
Yang, 2001, Eci1p Uses a PTS1 to Enter Peroxisomes: Either Its Own or That of a Partner, Dci1p, Eur. J. Cell Biol., 80, 126, 10.1078/0171-9335-00144
DeLoache, 2016, Towards Repurposing the Yeast Peroxisome for Compartmentalizing Heterologous Metabolic Pathways, Nat. Commun., 7, 11152, 10.1038/ncomms11152
Antonenkov, 2004, The Rat Liver Peroxisomal Membrane Forms a Permeability Barrier for Cofactors but Not for Small Metabolites in Vitro, J. Cell Sci., 117, 5633, 10.1242/jcs.01485
Lingner, 2016, Identification of New Fungal Peroxisomal Matrix Proteins and Revision of the PTS1 Consensus: Peroxisomal Targeting Signal Type 1 (PTS1) in Yeast, Traffic, 17, 1110, 10.1111/tra.12426
Fung, 1991, Recognition of a Peroxisomal Tripeptide Entry Signal by the Glycosomes of Trypanosoma Brucei, Mol. Biochem. Parasitol., 45, 261, 10.1016/0166-6851(91)90093-L
Dodt, 1995, Mutations in the PTS1 Receptor Gene, PXR1, Define Complementation Group 2 of the Peroxisome Biogenesis Disorders, Nat. Genet., 9, 115, 10.1038/ng0295-115
Terlecky, 1995, The Pichia Pastoris Peroxisomal Protein PAS8p Is the Receptor for the C-Terminal Tripeptide Peroxisomal Targeting Signal, EMBO J., 14, 3627, 10.1002/j.1460-2075.1995.tb00032.x
Stanley, 2006, Recognition of a Functional Peroxisome Type 1 Target by the Dynamic Import Receptor Pex5p, Mol. Cell, 24, 653, 10.1016/j.molcel.2006.10.024
Carvalho, 2006, The N-Terminal Half of the Peroxisomal Cycling Receptor Pex5p Is a Natively Unfolded Domain, J. Mol. Biol., 356, 864, 10.1016/j.jmb.2005.12.002
Gaussmann, 2021, Membrane Interactions of the Peroxisomal Proteins PEX5 and PEX14, Front. Cell Dev. Biol., 9, 651449, 10.3389/fcell.2021.651449
Kerssen, 2004, Functional Similarity between the Peroxisomal PTS2 Receptor Binding Protein Pex18p and the N-Terminal Half of the PTS1 Receptor Pex5p, Mol. Cell. Biol., 24, 8895, 10.1128/MCB.24.20.8895-8906.2004
Klein, 2002, Saccharomyces Cerevisiae Acyl-CoA Oxidase Follows a Novel, Non-PTS1, Import Pathway into Peroxisomes That Is Dependent on Pex5p, J. Biol. Chem., 277, 25011, 10.1074/jbc.M203254200
Gunkel, 2004, Routing of Hansenula Polymorpha Alcohol Oxidase: An Alternative Peroxisomal Protein-Sorting Machinery, Mol. Biol. Cell, 15, 1347, 10.1091/mbc.e03-04-0258
Meinecke, 2010, The Peroxisomal Importomer Constitutes a Large and Highly Dynamic Pore, Nat. Cell Biol., 12, 273, 10.1038/ncb2027
Niederhoff, 2005, Yeast Pex14p Possesses Two Functionally Distinct Pex5p and One Pex7p Binding Sites, J. Biol. Chem., 280, 35571, 10.1074/jbc.M502460200
Dias, 2017, The Peroxisomal Matrix Protein Translocon Is a Large Cavity-Forming Protein Assembly into Which PEX5 Protein Enters to Release Its Cargo, J. Biol. Chem., 292, 15287, 10.1074/jbc.M117.805044
Gould, 1996, Pex13p Is an SH3 Protein of the Peroxisome Membrane and a Docking Factor for the Predominantly Cytoplasmic PTSl Receptor, J. Cell Biol., 135, 11, 10.1083/jcb.135.1.85
Urquhart, 2000, Interaction of Pex5p, the Type 1 Peroxisome Targeting Signal Receptor, with the Peroxisomal Membrane Proteins Pex14p and Pex13p, J. Biol. Chem., 275, 4127, 10.1074/jbc.275.6.4127
Deckers, 2010, Targeting of Pex8p to the Peroxisomal Importomer, Eur. J. Cell Biol., 89, 924, 10.1016/j.ejcb.2010.06.019
Otera, 2002, Peroxisomal Targeting Signal Receptor Pex5p Interacts with Cargoes and Import Machinery Components in a Spatiotemporally Differentiated Manner: Conserved Pex5p WXXXF/Y Motifs Are Critical for Matrix Protein Import, Mol. Cell. Biol., 22, 1639, 10.1128/MCB.22.6.1639-1655.2002
Agne, 2003, Pex8p: An Intraperoxisomal Organizer of the Peroxisomal Import Machinery, Mol. Cell, 11, 635, 10.1016/S1097-2765(03)00062-5
Reguenga, 2001, Characterization of the Mammalian Peroxisomal Import Machinery: Pex2p, Pex5p, Pex12p, AND Pex14p are subunits of the same protein assembly, J. Biol. Chem., 276, 29935, 10.1074/jbc.M104114200
Beck, 2015, Distinct Pores for Peroxisomal Import of PTS1 and PTS2 Proteins, Cell Rep., 13, 2126, 10.1016/j.celrep.2015.11.016
Shiozawa, 2009, Solution Structure of Human Pex5·Pex14·PTS1 Protein Complexes Obtained by Small Angle X-ray Scattering, J. Biol. Chem., 284, 25334, 10.1074/jbc.M109.002311
Williams, 2005, Saccharomyces Cerevisiae Pex14p Contains Two Independent Pex5p Binding Sites, Which Are Both Essential for PTS1 Protein Import, FEBS Lett., 579, 3416, 10.1016/j.febslet.2005.05.011
Pires, 2003, The ScPex13p SH3 Domain Exposes Two Distinct Binding Sites for Pex5p and Pex14p, J. Mol. Biol., 326, 1427, 10.1016/S0022-2836(03)00039-1
Girzalsky, 1999, Involvement of Pex13p in Pex14p Localization and Peroxisomal Targeting Signal 2–Dependent Protein Import into Peroxisomes, J. Cell Biol., 144, 1151, 10.1083/jcb.144.6.1151
Oliveira, 2002, Mammalian Pex14p: Membrane Topology and Characterisation of the Pex14p–Pex14p Interaction, Biochim. Biophys. Acta BBA-Biomembr., 1567, 13, 10.1016/S0005-2736(02)00635-1
Ferreira, 2019, Membrane Topologies of PEX 13 and PEX 14 Provide New Insights on the Mechanism of Protein Import into Peroxisomes, FEBS J., 286, 205, 10.1111/febs.14697
Skowyra, M., and Rapoport, T.A. (2022). Mechanism of PEX5-Mediated Protein Import into Peroxisomes. bioRxiv.
Kerssen, 2006, Membrane Association of the Cycling Peroxisome Import Receptor Pex5p, J. Biol. Chem., 281, 27003, 10.1074/jbc.M509257200
Rosenkranz, 2006, Functional Association of the AAA Complex and the Peroxisomal Importomer, FEBS J., 273, 3804, 10.1111/j.1742-4658.2006.05388.x
Marzioch, 1994, PAS7 Encodes a Novel Yeast Member of the WD-40 Protein Family Essential for Import of 3-Oxoacyl-CoA Thiolase, a PTS2-Containing Protein, into Peroxisomes, EMBO J., 13, 4908, 10.1002/j.1460-2075.1994.tb06818.x
Zhang, 1995, PEB1 (PAS7) in Saccharomyces Cerevisiae Encodes a Hydrophilic, Intra-Peroxisomal Protein That Is a Member of the WD Repeat Family and Is Essential for the Import of Thiolase into Peroxisomes, J. Cell Biol., 129, 65, 10.1083/jcb.129.1.65
Swinkels, 1991, A Novel, Cleavable Peroxisomal Targeting Signal at the Amino-Terminus of the Rat 3-Ketoacyl-CoA Thiolase, EMBO J., 10, 3255, 10.1002/j.1460-2075.1991.tb04889.x
Braverman, 1997, Human PEXl Encodes the Peroxisomal PTS2 Receptor and Is Responsible for Rhizomelic Chondrodysplasia Punctata, Nat. Genet., 15, 369, 10.1038/ng0497-369
Braverman, 1998, An Isoform of Pex5p, the Human PTS1 Receptor, Is Required for the Import of PTS2 Proteins into Peroxisomes, Hum. Mol. Genet., 7, 1195, 10.1093/hmg/7.8.1195
Matsumura, 2000, Disruption of the Interaction of the Longer Isoform of Pex5p, Pex5pL, with Pex7p Abolishes Peroxisome Targeting Signal Type 2 Protein Import in Mammals, J. Biol. Chem., 275, 21715, 10.1074/jbc.M000721200
Dodt, 2001, Domain Mapping of Human PEX5 Reveals Functional and Structural Similarities to Saccharomyces Cerevisiae Pex18p and Pex21p, J. Biol. Chem., 276, 41769, 10.1074/jbc.M106932200
Purdue, 1998, Pex18p and Pex21p, a Novel Pair of Related Peroxins Essential for Peroxisomal Targeting by the PTS2 Pathway, J. Cell Biol., 143, 1859, 10.1083/jcb.143.7.1859
Mukai, 2006, Molecular Mechanisms of Import of Peroxisome-Targeting Signal Type 2 (PTS2) Proteins by PTS2 Receptor Pex7p and PTS1 Receptor Pex5pL, J. Biol. Chem., 281, 37311, 10.1074/jbc.M607178200
Williams, 2006, Pex13p: Docking or Cargo Handling Protein?, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1763, 1585, 10.1016/j.bbamcr.2006.09.007
Freitas, 2011, PEX5 Protein Binds Monomeric Catalase Blocking Its Tetramerization and Releases It upon Binding the N-Terminal Domain of PEX14, J. Biol. Chem., 286, 40509, 10.1074/jbc.M111.287201
Wang, 2003, Physical Interactions of the Peroxisomal Targeting Signal 1 Receptor Pex5p, Studied by Fluorescence Correlation Spectroscopy, J. Biol. Chem., 278, 43340, 10.1074/jbc.M307789200
Rodrigues, 2014, A PEX7-Centered Perspective on the Peroxisomal Targeting Signal Type 2-Mediated Protein Import Pathway, Mol. Cell. Biol., 34, 2917, 10.1128/MCB.01727-13
Pedrosa, 2018, Peroxisomal Monoubiquitinated PEX5 Interacts with the AAA ATPases PEX1 and PEX6 and Is Unfolded during Its Dislocation into the Cytosol, J. Biol. Chem., 293, 11553, 10.1074/jbc.RA118.003669
Hensel, 2011, Cysteine-Dependent Ubiquitination of Pex18p Is Linked to Cargo Translocation across the Peroxisomal Membrane, J. Biol. Chem., 286, 43495, 10.1074/jbc.M111.286104
Subramani, 2007, A Conserved Cysteine Residue of Pichia Pastoris Pex20p Is Essential for Its Recycling from the Peroxisome to the Cytosol, J. Biol. Chem., 282, 7424, 10.1074/jbc.M611627200
Platta, 2004, Ubiquitination of the Peroxisomal Import Receptor Pex5p, Biochem. J., 384, 37, 10.1042/BJ20040572
Platta, 2005, Functional Role of the AAA Peroxins in Dislocation of the Cycling PTS1 Receptor Back to the Cytosol, Nat. Cell Biol., 7, 817, 10.1038/ncb1281
Kragt, 2005, The Saccharomyces Cerevisiae Peroxisomal Import Receptor Pex5p Is Monoubiquitinated in Wild Type Cells, J. Biol. Chem., 280, 7867, 10.1074/jbc.M413553200
Platta, 2009, Pex2 and Pex12 Function as Protein-Ubiquitin Ligases in Peroxisomal Protein Import, Mol. Cell. Biol., 29, 5505, 10.1128/MCB.00388-09
Wiebel, 1992, The Pas2 Protein Essential for Peroxisome Biogenesis Is Related to Ubiquitin-Conjugating Enzymes, Nature, 359, 73, 10.1038/359073a0
Grou, 2008, Members of the E2D (UbcH5) Family Mediate the Ubiquitination of the Conserved Cysteine of Pex5p, the Peroxisomal Import Receptor, J. Biol. Chem., 283, 14190, 10.1074/jbc.M800402200
Williams, 2007, A Conserved Cysteine Is Essential for Pex4p-Dependent Ubiquitination of the Peroxisomal Import Receptor Pex5p, J. Biol. Chem., 282, 22534, 10.1074/jbc.M702038200
Carvalho, 2007, Ubiquitination of Mammalian Pex5p, the Peroxisomal Import Receptor, J. Biol. Chem., 282, 31267, 10.1074/jbc.M706325200
McClellan, 2019, Cellular Functions and Molecular Mechanisms of Non-Lysine Ubiquitination, Open Biol., 9, 190147, 10.1098/rsob.190147
Apanasets, 2014, PEX5, the Shuttling Import Receptor for Peroxisomal Matrix Proteins, Is a Redox-Sensitive Protein, Traffic Cph. Den., 15, 94, 10.1111/tra.12129
Ma, 2013, Redox-Regulated Cargo Binding and Release by the Peroxisomal Targeting Signal Receptor, Pex5, J. Biol. Chem., 288, 27220, 10.1074/jbc.M113.492694
Williams, 2012, The Relevance of the Non-Canonical PTS1 of Peroxisomal Catalase, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1823, 1133, 10.1016/j.bbamcr.2012.04.006
Fujiki, 2021, A New Paradigm in Catalase Research, Trends Cell Biol., 31, 148, 10.1016/j.tcb.2020.12.006
Schliebs, 2010, Peroxisomal Protein Import and ERAD: Variations on a Common Theme, Nat. Rev. Mol. Cell Biol., 11, 885, 10.1038/nrm3008
Debelyy, 2011, Ubp15p, a Ubiquitin Hydrolase Associated with the Peroxisomal Export Machinery, J. Biol. Chem., 286, 28223, 10.1074/jbc.M111.238600
Grou, 2012, Identification of Ubiquitin-Specific Protease 9X (USP9X) as a Deubiquitinase Acting on Ubiquitin-Peroxin 5 (PEX5) Thioester Conjugate, J. Biol. Chem., 287, 12815, 10.1074/jbc.M112.340158
Zhao, 2007, Cellular Functions of NSF: Not Just SNAPs and SNAREs, FEBS Lett., 581, 2140, 10.1016/j.febslet.2007.03.032
Yedidi, 2017, AAA-ATPases in Protein Degradation, Front. Mol. Biosci., 4, 42, 10.3389/fmolb.2017.00042
Monroe, 2016, Meiotic Clade AAA ATPases: Protein Polymer Disassembly Machines, J. Mol. Biol., 428, 1897, 10.1016/j.jmb.2015.11.004
Kappel, 2012, Rlp24 Activates the AAA-ATPase Drg1 to Initiate Cytoplasmic Pre-60S Maturation, J. Cell Biol., 199, 771, 10.1083/jcb.201205021
Latterich, 1995, Membrane Fusion and the Cell Cycle: Cdc48p Participates in the Fusion of ER Membranes, Cell, 82, 885, 10.1016/0092-8674(95)90268-6
Erdmann, 1989, Isolation of Peroxisome-Deficient Mutants of Saccharomyces Cerevisiae, Proc. Natl. Acad. Sci. USA, 86, 5419, 10.1073/pnas.86.14.5419
Erdmann, 1991, PAS1, a Yeast Gene Required for Peroxisome Biogenesis, Encodes a Member of a Novel Family of Putative ATPases, Cell, 64, 499, 10.1016/0092-8674(91)90234-P
Hemrika, 1993, Sequence of the PAS8 Gene, the Product of Which Is Essential for Biogenesis of Peroxisomes in Saccharomyces Cerevisiae, Biochim. Biophys. Acta BBA-Gene Struct. Expr., 1216, 325, 10.1016/0167-4781(93)90166-B
Tsukamoto, 1995, Peroxisome Assembly Factor–2, a Putative ATPase Cloned by Functional Complementation on a Peroxisome–Deficient Mammalian Cell Mutant, Nat. Genet., 11, 395, 10.1038/ng1295-395
Reuber, 1997, Mutations in PEX1 Are the Most Common Cause of Peroxisome Biogenesis Disorders, Nat. Genet., 17, 445, 10.1038/ng1297-445
Portsteffen, 1997, Human PEX1 Is Mutated in Complementation Group 1 of the Peroxisome Biogenesis Disorders, Nat. Genet., 17, 449, 10.1038/ng1297-449
Meyer, 2012, Emerging Functions of the VCP/P97 AAA-ATPase in the Ubiquitin System, Nat. Cell Biol., 14, 117, 10.1038/ncb2407
Titorenko, 2000, Peroxisomal Membrane Fusion Requires Two Aaa Family Atpases, Pex1p and Pex6p, J. Cell Biol., 150, 881, 10.1083/jcb.150.4.881
Titorenko, 2000, Fusion of Small Peroxisomal Vesicles in Vitro Reconstructs an Early Step in the in Vivo Multistep Peroxisome Assembly Pathway of Yarrowia Lipolytica, J. Cell Biol., 148, 29, 10.1083/jcb.148.1.29
Collins, 2000, The Peroxisome Biogenesis Factors Pex4p, Pex22p, Pex1p, and Pex6p Act in the Terminal Steps of Peroxisomal Matrix Protein Import, Mol. Cell. Biol., 20, 7516, 10.1128/MCB.20.20.7516-7526.2000
Kim, 2008, Ubiquitin Signals Autophagic Degradation of Cytosolic Proteins and Peroxisomes, Proc. Natl. Acad. Sci. USA, 105, 20567, 10.1073/pnas.0810611105
Li, 2017, Proteomic Analysis of the Human Tankyrase Protein Interaction Network Reveals Its Role in Pexophagy, Cell Rep., 20, 737, 10.1016/j.celrep.2017.06.077
Deosaran, 2012, NBR1 Acts as an Autophagy Receptor for Peroxisomes, J. Cell Sci., 126, 939
Sargent, 2016, PEX2 Is the E3 Ubiquitin Ligase Required for Pexophagy during Starvation, J. Cell Biol., 214, 677, 10.1083/jcb.201511034
Zhang, 2015, ATM Functions at the Peroxisome to Induce Pexophagy in Response to ROS, Nat. Cell Biol., 17, 1259, 10.1038/ncb3230
Nordgren, 2015, Export-Deficient Monoubiquitinated PEX5 Triggers Peroxisome Removal in SV40 Large T Antigen-Transformed Mouse Embryonic Fibroblasts, Autophagy, 11, 1326, 10.1080/15548627.2015.1061846
Gonzalez, 2018, A Pex1 Missense Mutation Improves Peroxisome Function in a Subset of Arabidopsis Pex6 Mutants without Restoring PEX5 Recycling, Proc. Natl. Acad. Sci. USA, 115, E3163, 10.1073/pnas.1721279115
Tamura, 2014, AAA Peroxins and Their Recruiter Pex26p Modulate the Interactions of Peroxins Involved in Peroxisomal Protein Import, J. Biol. Chem., 289, 24336, 10.1074/jbc.M114.588038
Seo, 2007, A Novel Role of Peroxin PEX6: Suppression of Aging Defects in Mitochondria, Aging Cell, 6, 405, 10.1111/j.1474-9726.2007.00291.x
Gardner, 2015, The Pex1/Pex6 Complex Is a Heterohexameric AAA + Motor with Alternating and Highly Coordinated Subunits, J. Mol. Biol., 427, 1375, 10.1016/j.jmb.2015.01.019
Blok, 2015, Unique Double-Ring Structure of the Peroxisomal Pex1/Pex6 ATPase Complex Revealed by Cryo-Electron Microscopy, Proc. Natl. Acad. Sci. USA, 112, E4017, 10.1073/pnas.1500257112
Ciniawsky, 2015, Molecular Snapshots of the Pex1/6 AAA+ Complex in Action, Nat. Commun., 6, 7331, 10.1038/ncomms8331
Jumper, 2021, Highly Accurate Protein Structure Prediction with AlphaFold, Nature, 596, 590, 10.1038/s41586-021-03819-2
Varadi, 2022, AlphaFold Protein Structure Database: Massively Expanding the Structural Coverage of Protein-Sequence Space with High-Accuracy Models, Nucleic Acids Res., 50, D439, 10.1093/nar/gkab1061
Pettersen, 2021, UCSF ChimeraX: Structure Visualization for Researchers, Educators, and Developers, Protein Sci., 30, 70, 10.1002/pro.3943
Shiozawa, 2004, Structure of the N-Terminal Domain of PEX1 AAA-ATPase: Characterization of a putative adaptor-binding domain, J. Biol. Chem., 279, 50060, 10.1074/jbc.M407837200
Gates, 2020, Stairway to Translocation: AAA+ Motor Structures Reveal the Mechanisms of ATP-dependent Substrate Translocation, Protein Sci., 29, 407, 10.1002/pro.3743
Puchades, 2020, The Molecular Principles Governing the Activity and Functional Diversity of AAA+ Proteins, Nat. Rev. Mol. Cell Biol., 21, 43, 10.1038/s41580-019-0183-6
Glynn, 2009, Structures of Asymmetric ClpX Hexamers Reveal Nucleotide-Dependent Motions in a AAA+ Protein-Unfolding Machine, Cell, 139, 744, 10.1016/j.cell.2009.09.034
Wendler, 2012, Structure and Function of the AAA+ Nucleotide Binding Pocket, Biochim. Biophys. Acta, 1823, 2, 10.1016/j.bbamcr.2011.06.014
Bodnar, 2017, Toward an Understanding of the Cdc48/P97 ATPase, F1000Research, 6, 1318, 10.12688/f1000research.11683.1
Matveeva, 1997, N-Ethylmaleimide-Sensitive Fusion Protein Contains High and Low Affinity ATP-Binding Sites That Are Functionally Distinct, J. Biol. Chem., 272, 26413, 10.1074/jbc.272.42.26413
Konagurthu, 2006, MUSTANG: A Multiple Structural Alignment Algorithm, Proteins Struct. Funct. Bioinform., 64, 559, 10.1002/prot.20921
Zhao, 2015, Mechanistic Insights into the Recycling Machine of the SNARE Complex, Nature, 518, 61, 10.1038/nature14148
Bodnar, 2018, Structure of the Cdc48 ATPase with Its Ubiquitin-Binding Cofactor Ufd1–Npl4, Nat. Struct. Mol. Biol., 25, 616, 10.1038/s41594-018-0085-x
Gardner, 2018, The Peroxisomal AAA-ATPase Pex1/Pex6 Unfolds Substrates by Processive Threading, Nat. Commun., 9, 135, 10.1038/s41467-017-02474-4
Pan, 2021, Mechanistic Insight into Substrate Processing and Allosteric Inhibition of Human P97, Nat. Struct. Mol. Biol., 28, 614, 10.1038/s41594-021-00617-2
Cooney, 2019, Structure of the Cdc48 Segregase in the Act of Unfolding an Authentic Substrate, Science, 365, 502, 10.1126/science.aax0486
Han, 2017, The AAA ATPase Vps4 Binds ESCRT-III Substrates through a Repeating Array of Dipeptide-Binding Pockets, eLife, 6, e31324, 10.7554/eLife.31324
Goodall, 2018, Substrate-Engaged 26 S Proteasome Structures Reveal Mechanisms for ATP-Hydrolysis–Driven Translocation, Science, 362, eaav0725, 10.1126/science.aav0725
Puchades, 2017, Structure of the Mitochondrial Inner Membrane AAA+ Protease YME1 Gives Insight into Substrate Processing, Science, 358, eaao0464, 10.1126/science.aao0464
Lo, 2019, Cryo-EM Structure of the Essential Ribosome Assembly AAA-ATPase Rix7, Nat. Commun., 10, 513, 10.1038/s41467-019-08373-0
Yu, 2018, ATP Hydrolysis-Coupled Peptide Translocation Mechanism of Mycobacterium Tuberculosis ClpB, Proc. Natl. Acad. Sci. USA, 115, E9560, 10.1073/pnas.1810648115
Dong, 2019, Cryo-EM Structures and Dynamics of Substrate-Engaged Human 26S Proteasome, Nature, 565, 49, 10.1038/s41586-018-0736-4
Ripstein, 2017, Structure of a AAA+ Unfoldase in the Process of Unfolding Substrate, eLife, 6, e25754, 10.7554/eLife.25754
Martin, 2005, Rebuilt AAA + Motors Reveal Operating Principles for ATP-Fuelled Machines, Nature, 437, 1115, 10.1038/nature04031
Cordova, 2014, Stochastic but Highly Coordinated Protein Unfolding and Translocation by the ClpXP Proteolytic Machine, Cell, 158, 647, 10.1016/j.cell.2014.05.043
Beckwith, 2013, Reconstitution of the 26S Proteasome Reveals Functional Asymmetries in Its AAA+ Unfoldase, Nat. Struct. Mol. Biol., 20, 1164, 10.1038/nsmb.2659
Sauer, 2022, Structure and Function of ClpXP, a AAA+ Proteolytic Machine Powered by Probabilistic ATP Hydrolysis, Crit. Rev. Biochem. Mol. Biol., 57, 188, 10.1080/10409238.2021.1979461
Augustin, 2009, An Intersubunit Signaling Network Coordinates ATP Hydrolysis by M-AAA Proteases, Mol. Cell, 35, 574, 10.1016/j.molcel.2009.07.018
Mazal, 2021, Ultrafast Pore-Loop Dynamics in a AAA+ Machine Point to a Brownian-Ratchet Mechanism for Protein Translocation, Sci. Adv., 7, eabg4674, 10.1126/sciadv.abg4674
Olivares, 2014, Mechanochemical Basis of Protein Degradation by a Double-Ring AAA+ Machine, Nat. Struct. Mol. Biol., 21, 871, 10.1038/nsmb.2885
Lopez, 2020, Conformational Plasticity of the ClpAP AAA+ Protease Couples Protein Unfolding and Proteolysis, Nat. Struct. Mol. Biol., 27, 406, 10.1038/s41594-020-0409-5
Ripstein, 2020, A Processive Rotary Mechanism Couples Substrate Unfolding and Proteolysis in the ClpXP Degradation Machinery, eLife, 9, e52158, 10.7554/eLife.52158
Fei, 2020, Structures of the ATP-Fueled ClpXP Proteolytic Machine Bound to Protein Substrate, eLife, 9, e52774, 10.7554/eLife.52774
Olivares, 2011, Single-Molecule Protein Unfolding and Translocation by an ATP-Fueled Proteolytic Machine, Cell, 145, 257, 10.1016/j.cell.2011.03.036
Avellaneda, 2020, Processive Extrusion of Polypeptide Loops by a Hsp100 Disaggregase, Nature, 578, 317, 10.1038/s41586-020-1964-y
Han, 2019, Structure of Vps4 with Circular Peptides and Implications for Translocation of Two Polypeptide Chains by AAA+ ATPases, eLife, 8, e44071, 10.7554/eLife.44071
Sen, 2013, The ClpXP Protease Unfolds Substrates Using a Constant Rate of Pulling but Different Gears, Cell, 155, 636, 10.1016/j.cell.2013.09.022
Tan, 2016, Structures of the Double-Ring AAA ATPase Pex1–Pex6 Involved in Peroxisome Biogenesis, FEBS J., 283, 986, 10.1111/febs.13569
Yu, 1999, NSF N-Terminal Domain Crystal Structure: Models of NSF Function, Mol. Cell, 4, 97, 10.1016/S1097-2765(00)80191-4
Schindelin, 2017, The Interplay of Cofactor Interactions and Post-Translational Modifications in the Regulation of the AAA+ ATPase P97, Front. Mol. Biosci., 4, 21
Rosenzweig, 2015, ClpB N-Terminal Domain Plays a Regulatory Role in Protein Disaggregation, Proc. Natl. Acad. Sci. USA, 112, E6872, 10.1073/pnas.1512783112
Tzeng, 2021, Molecular Insights into Substrate Recognition and Discrimination by the N-Terminal Domain of Lon AAA+ Protease, eLife, 10, e64056, 10.7554/eLife.64056
Birschmann, 2003, Pex15p of Saccharomyces Cerevisiae Provides a Molecular Basis for Recruitment of the AAA Peroxin Pex6p to Peroxisomal Membranes, Mol. Biol. Cell, 14, 2226, 10.1091/mbc.e02-11-0752
Grimm, 2016, Nucleotide-Dependent Assembly of the Peroxisomal Receptor Export Complex, Sci. Rep., 6, 19838, 10.1038/srep19838
Schieferdecker, A., and Wendler, P. (2019). Structural Mapping of Missense Mutations in the Pex1/Pex6 Complex. Int. J. Mol. Sci., 20.
Elgersma, 1997, Overexpression of Pex15p, a Phosphorylated Peroxisomal Integral Membrane Protein Required for Peroxisome Assembly in S.Cerevisiae, Causes Proliferation of the Endoplasmic Reticulum Membrane, EMBO J., 16, 7326, 10.1093/emboj/16.24.7326
Goto, 2011, Arabidopsis ABERRANT PEROXISOME MORPHOLOGY9 Is a Peroxin That Recruits the PEX1-PEX6 Complex to Peroxisomes, Plant Cell, 23, 1573, 10.1105/tpc.110.080770
Miyata, 2005, Shuttling Mechanism of Peroxisome Targeting Signal Type 1 Receptor Pex5: ATP-Independent Import and ATP-Dependent Export, Mol. Cell. Biol., 25, 10822, 10.1128/MCB.25.24.10822-10832.2005
Weller, 2005, Alternative Splicing Suggests Extended Function of PEX26 in Peroxisome Biogenesis, Am. J. Hum. Genet., 76, 987, 10.1086/430637
Woidy, 2021, Edgetic Perturbations Contribute to Phenotypic Variability in PEX26 Deficiency, Front. Genet., 12, 726174, 10.3389/fgene.2021.726174
Guder, 2019, Isoform-Specific Domain Organization Determines Conformation and Function of the Peroxisomal Biogenesis Factor PEX26, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1866, 518, 10.1016/j.bbamcr.2018.10.013
Evans, R., O’Neill, M., Pritzel, A., Antropova, N., Senior, A., Green, T., Žídek, A., Bates, R., Blackwell, S., and Yim, J. (2022). Protein Complex Prediction with AlphaFold-Multimer. bioRxiv.
Furuki, 2006, Mutations in the Peroxin Pex26p Responsible for Peroxisome Biogenesis Disorders of Complementation Group 8 Impair Its Stability, Peroxisomal Localization, and Interaction with the Pex1p·Pex6p Complex, J. Biol. Chem., 281, 1317, 10.1074/jbc.M510044200
Halbach, 2006, Targeting of the Tail-Anchored Peroxisomal Membrane Proteins PEX26 and PEX15 Occurs through C-Terminal PEX19-Binding Sites, J. Cell Sci., 119, 2508, 10.1242/jcs.02979
Fokkema, 2011, LOVD v.2.0: The next Generation in Gene Variant Databases, Hum. Mutat., 32, 557, 10.1002/humu.21438
Krogh, 2001, Predicting Transmembrane Protein Topology with a Hidden Markov Model: Application to Complete Genomes11Edited by F. Cohen, J. Mol. Biol., 305, 567, 10.1006/jmbi.2000.4315
Gautier, 2008, HELIQUEST: A Web Server to Screen Sequences with Specific -Helical Properties, Bioinformatics, 24, 2101, 10.1093/bioinformatics/btn392
Zhang, 2008, The “glutamate Switch” Provides a Link between ATPase Activity and Ligand Binding in AAA+ Proteins, Nat. Struct. Mol. Biol., 15, 1223, 10.1038/nsmb.1501
Weibezahn, 2003, Characterization of a Trap Mutant of the AAA+ Chaperone ClpB, J. Biol. Chem., 278, 32608, 10.1074/jbc.M303653200
Costello, 2017, Predicting the Targeting of Tail-Anchored Proteins to Subcellular Compartments in Mammalian Cells, J. Cell Sci., 130, 1675, 10.1242/jcs.200204
Matsumoto, 2003, Mutations in Novel Peroxin Gene PEX26 That Cause Peroxisome-Biogenesis Disorders of Complementation Group 8 Provide a Genotype-Phenotype Correlation, Am. J. Hum. Genet., 73, 233, 10.1086/377004
Dammai, 2001, The Human Peroxisomal Targeting Signal Receptor, Pex5p, Is Translocated into the Peroxisomal Matrix and Recycled to the Cytosol, Cell, 105, 187, 10.1016/S0092-8674(01)00310-5
Berner, 2018, Protein Quality Control of the Endoplasmic Reticulum and Ubiquitin–Proteasome-Triggered Degradation of Aberrant Proteins: Yeast Pioneers the Path, Annu. Rev. Biochem., 87, 751, 10.1146/annurev-biochem-062917-012749
Schwerter, 2018, Receptor Recognition by the Peroxisomal AAA Complex Depends on the Presence of the Ubiquitin Moiety and Is Mediated by Pex1p, J. Biol. Chem., 293, 15458, 10.1074/jbc.RA118.003936
Hagmann, 2018, Chemically Monoubiquitinated PEX5 Binds to the Components of the Peroxisomal Docking and Export Machinery, Sci. Rep., 8, 16014, 10.1038/s41598-018-34200-5
Miyata, 2012, AWP1/ZFAND6 Functions in Pex5 Export by Interacting with Cys-Monoubiquitinated Pex5 and Pex6 AAA ATPase, Traffic, 13, 168, 10.1111/j.1600-0854.2011.01298.x
Pedrosa, A.G., Francisco, T., Ferreira, M.J., Rodrigues, T.A., Barros-Barbosa, A., and Azevedo, J.E. (2019). A Mechanistic Perspective on PEX1 and PEX6, Two AAA+ Proteins of the Peroxisomal Protein Import Machinery. Int. J. Mol. Sci., 20.
Ji, 2022, Translocation of Polyubiquitinated Protein Substrates by the Hexameric Cdc48 ATPase, Mol. Cell, 82, 570, 10.1016/j.molcel.2021.11.033
Haslberger, 2008, Protein Disaggregation by the AAA+ Chaperone ClpB Involves Partial Threading of Looped Polypeptide Segments, Nat. Struct. Mol. Biol., 15, 641, 10.1038/nsmb.1425
Monroe, 2017, Structural Basis of Protein Translocation by the Vps4-Vta1 AAA ATPase, eLife, 6, e24487, 10.7554/eLife.24487
Yifrach, 2016, Characterization of Proteome Dynamics in Oleate Reveals a Novel Peroxisome Targeting Receptor, J. Cell Sci., 129, 4067, 10.1242/jcs.195255
Effelsberg, 2016, Pex9p Is a Novel Yeast Peroxisomal Import Receptor for PTS1-Proteins, J. Cell Sci., 129, 4057, 10.1242/jcs.195271
Tanaka, 2014, Hrr25 Triggers Selective Autophagy–Related Pathways by Phosphorylating Receptor Proteins, J. Cell Biol., 207, 91, 10.1083/jcb.201402128
Motley, 2012, Pex3-Anchored Atg36 Tags Peroxisomes for Degradation in Saccharomyces Cerevisiae, EMBO J., 31, 2852, 10.1038/emboj.2012.151
Steinberg, 2006, Peroxisome Biogenesis Disorders, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1763, 1733, 10.1016/j.bbamcr.2006.09.010
Santos, 1992, Peroxisome assembly mutations in humans: Structural heterogeneity in Zellweger syndrome, J. Cell. Physiol., 151, 103, 10.1002/jcp.1041510115
Santos, 1988, Peroxisomal Integral Membrane Proteins in Control and Zellweger Fibroblasts, J. Biol. Chem., 263, 10502, 10.1016/S0021-9258(19)81544-2
Soliman, 2018, Super-Resolution Imaging Reveals the Sub-Diffraction Phenotype of Zellweger Syndrome Ghosts and Wild-Type Peroxisomes, Sci. Rep., 8, 7809, 10.1038/s41598-018-24119-2
South, 1999, Peroxisome Synthesis in the Absence of Preexisting Peroxisomes, J. Cell Biol., 144, 255, 10.1083/jcb.144.2.255
Schrader, 2015, Peroxisome-Mitochondria Interplay and Disease, J. Inherit. Metab. Dis., 38, 681, 10.1007/s10545-015-9819-7
Kleinecke, 2017, Peroxisomal Dysfunctions Cause Lysosomal Storage and Axonal Kv1 Channel Redistribution in Peripheral Neuropathy, eLife, 6, e23332, 10.7554/eLife.23332
Berger, 2016, Peroxisomes in Brain Development and Function, Biochim. Biophys. Acta BBA-Mol. Cell Res., 1863, 934, 10.1016/j.bbamcr.2015.12.005
Geisbrecht, 1998, Disruption of a PEX1–PEX6 Interaction Is the Most Common Cause of the Neurologic Disorders Zellweger Syndrome, Neonatal Adrenoleukodystrophy, and Infantile Refsum Disease, Proc. Natl. Acad. Sci. USA, 95, 8630, 10.1073/pnas.95.15.8630
Ratbi, 2015, Heimler Syndrome Is Caused by Hypomorphic Mutations in the Peroxisome-Biogenesis Genes PEX1 and PEX6, Am. J. Hum. Genet., 97, 535, 10.1016/j.ajhg.2015.08.011
Klouwer, 2021, Autophagy Inhibitors Do Not Restore Peroxisomal Functions in Cells With the Most Common Peroxisome Biogenesis Defect, Front. Cell Dev. Biol., 9, 661298, 10.3389/fcell.2021.661298
Nazarko, 2017, Pexophagy Is Responsible for 65% of Cases of Peroxisome Biogenesis Disorders, Autophagy, 13, 991, 10.1080/15548627.2017.1291480
Ebberink, 2011, Genetic Classification and Mutational Spectrum of More than 600 Patients with a Zellweger Syndrome Spectrum Disorder, Hum. Mutat., 32, 59, 10.1002/humu.21388
Walter, 2001, Disorders of Peroxisome Biogenesis Due to Mutations in PEX1: Phenotypes and PEX1 Protein Levels, Am. J. Hum. Genet., 69, 35, 10.1086/321265
Maxwell, 2002, Novel PEX1 Mutations and Genotype–Phenotype Correlations in Australasian Peroxisome Biogenesis Disorder Patients, Hum. Mutat., 20, 342, 10.1002/humu.10128
Argyriou, 2019, A Longitudinal Study of Retinopathy in the PEX1-Gly844Asp Mouse Model for Mild Zellweger Spectrum Disorder, Exp. Eye Res., 186, 107713, 10.1016/j.exer.2019.107713
Twomey, 2019, Substrate Processing by the Cdc48 ATPase Complex Is Initiated by Ubiquitin Unfolding, Science, 365, eaax1033, 10.1126/science.aax1033
Nashiro, 2011, Recruiting Mechanism of the AAA Peroxins, Pex1p and Pex6p, to Pex26p on the Peroxisomal Membrane, Traffic, 12, 774, 10.1111/j.1600-0854.2011.01182.x
Zhang, 2010, Recovery of PEX1-Gly843Asp Peroxisome Dysfunction by Small-Molecule Compounds, Proc. Natl. Acad. Sci. USA, 107, 5569, 10.1073/pnas.0914960107
MacLean, 2019, Zellweger Spectrum Disorder Patient–Derived Fibroblasts with the PEX1-Gly843Asp Allele Recover Peroxisome Functions in Response to Flavonoids, J. Cell. Biochem., 120, 3243, 10.1002/jcb.27591
Banerjee, 2016, 2.3 Å Resolution Cryo-EM Structure of Human P97 and Mechanism of Allosteric Inhibition, Science, 351, 871, 10.1126/science.aad7974
Zhang, 2019, Identification of NMS-873, an Allosteric and Specific P97 Inhibitor, as a Broad Antiviral against Both Influenza A and B Viruses, Eur. J. Pharm. Sci., 133, 86, 10.1016/j.ejps.2019.03.020
Zhou, 2015, Discovery of a First-in-Class, Potent, Selective, and Orally Bioavailable Inhibitor of the P97 AAA ATPase (CB-5083), J. Med. Chem., 58, 9480, 10.1021/acs.jmedchem.5b01346
Dephoure, 2008, A Quantitative Atlas of Mitotic Phosphorylation, Proc. Natl. Acad. Sci. USA, 105, 10762, 10.1073/pnas.0805139105
Matsuoka, 2007, ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage, Science, 316, 1160, 10.1126/science.1140321
Dinkel, 2011, Phospho.ELM: A Database of Phosphorylation Sites--Update 2011, Nucleic Acids Res., 39, D261, 10.1093/nar/gkq1104
Park, 2021, Depletion of HNRNPA1 Induces Peroxisomal Autophagy by Regulating PEX1 Expression, Biochem. Biophys. Res. Commun., 545, 69, 10.1016/j.bbrc.2021.01.083
Tomko, 2011, Order of the Proteasomal ATPases and Eukaryotic Proteasome Assembly, Cell Biochem. Biophys., 60, 13, 10.1007/s12013-011-9178-4
Zavodszky, 2021, Identification of a Quality-Control Factor That Monitors Failures during Proteasome Assembly, Science, 373, 998, 10.1126/science.abc6500
Narayan, 2016, Deep Proteome Analysis Identifies Age-Related Processes in C. Elegans, Cell Syst., 3, 144, 10.1016/j.cels.2016.06.011
Uzor, 2020, Aging Lowers PEX5 Levels in Cortical Neurons in Male and Female Mouse Brains, Mol. Cell. Neurosci., 107, 103536, 10.1016/j.mcn.2020.103536
Huang, K., Chen, W., Zhu, F., Li, P.W.-L., Kapahi, P., and Bai, H. (2019). RiboTag Translatomic Profiling of Drosophila Oenocytes under Aging and Induced Oxidative Stress. BMC Genom., 20.
Huang, K., Kim, J., Vo, P., Miao, T., and Bai, H. (2020). Peroxisome Import Stress Impairs Ribosome Biogenesis and Induces Integrative Stress Response through EIF2α Phosphorylation. bioRxiv.
Dixit, 2010, Peroxisomes Are Signaling Platforms for Antiviral Innate Immunity, Cell, 141, 668, 10.1016/j.cell.2010.04.018
Grewal, 2021, Peroxisome Compartmentalization of a Toxic Enzyme Improves Alkaloid Production, Nat. Chem. Biol., 17, 96, 10.1038/s41589-020-00668-4
Wajn, 2020, Transforming Yeast Peroxisomes into Microfactories for the Efficient Production of High-Value Isoprenoids, Proc. Natl. Acad. Sci. USA, 117, 31789, 10.1073/pnas.2013968117