Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion

Scientific Reports - Tập 5 Số 1
Tatsuya Shinagawa1, Angel T. Garcia‐Esparza1, Kazuhiro Takanabe1
1Division of Physical Sciences and Engineering, KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), 4700 KAUST, Thuwal 23955-6900 Saudi Arabia

Tóm tắt

AbstractMicrokinetic analyses of aqueous electrochemistry involving gaseous H2or O2, i.e., hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), are revisited. The Tafel slopes used to evaluate the rate determining steps generally assume extreme coverage of the adsorbed species (θ ≈ 0 or ≈1), although, in practice, the slopes are coverage-dependent. We conducted detailed kinetic analyses describing the coverage-dependent Tafel slopes for the aforementioned reactions. Our careful analyses provide a general benchmark for experimentally observed Tafel slopes that can be assigned to specific rate determining steps. The Tafel analysis is a powerful tool for discussing the rate determining steps involved in electrocatalysis, but our study also demonstrated that overly simplified assumptions led to an inaccurate description of the surface electrocatalysis. Additionally, in many studies, Tafel analyses have been performed in conjunction with the Butler-Volmer equation, where its applicability regarding only electron transfer kinetics is often overlooked. Based on the derived kinetic description of the HER/HOR as an example, the limitation of Butler-Volmer expression in electrocatalysis is also discussed in this report.

Từ khóa


Tài liệu tham khảo

Trasatti, S. Work function, electronegativity and electrochemical behavior of metals. Electroanal. Chem. Interfacial Electrochem. 39, 163 (1972).

Greeley, J. et al. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909 (2006).

Subbaraman, R. et al. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interface. Science. 334, 1256 (2011).

Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nature Chem. 5, 300 (2013).

Gennero de Chialvo, M. R. & Chialvo, A. C. Existence of two sets of kinetic parameters in the correlation of the hydrogen electrode reaction. J. Electrochem. Soc. 147, 1619 (2000).

Gennero de Chialvo, M. R. & Chialvo, A. C. Hydrogen diffusion effects on the kinetics of the hydrogen electrode reaction. Part 1. Theoretical aspects. Phys. Chem. Chem. Phys. 6, 4009 (2004).

Quaino, P. M., Gennero de Chialvo, M. R. & Chialvo, A. C. Hydrogen diffusion effects on the kinetics of the hydrogen electrode reaction. Part 2. Evaluation of kinetic parameters. Phys. Chem. Chem. Phys. 6, 4450 (2004).

Conway, B. E. & Bai, L. Determination of adsorption of OPD H species in the cathodic hydrogen evolution reaction at Pt in relation to electrocatalysis. J. Electroanal. Chem. 198, 149 (1986).

Durst, J., Simon, C., Hasche, F. & Gasteiger, H. A. Hydrogen oxidation and evolution reaction kinetics on carbon supported Pt. Ir, Rh and Pd electrocatalysts in acidic media. J. Electrochem. Soc. 162, F190 (2015).

Vesborg, P. C. K. & Seger, B. Chorkendorff Recent development in hydrogen evolution reaction catalysts and their practical implementation. J. Phys. Chem. Lett. 6, 951 (2015).

Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nature Comm. 4, 2439 (2013).

Lu, Z. et al. Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50, 6479 (2014).

Gong, M. et al. An advanced Ni-Fe layered double hydroxide electrocatalysts for water oxidation. J. Am. Chem. Soc. 135, 8452 (2013).

MaCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013).

MaCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347 (2015).

Danilovic, N. et al. Activity-stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474 (2014).

Chang, S. H. et al. Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nature Comm. 5, 4191 (2014).

Rubbaraman, R. et al. Trends in activity for the water electrolyser reaction on 3d M(Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nature Mater. 11, 550 (2013).

Suntivich, J. et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011).

Vogel, W., Lundquist, J., Ross, P. & Stonehart, P. Reaction pathways and poisons-2 The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochim Acta 20, 79 (1975).

Vermeijlen, J. J. T. T., Janssen, L. J. J. & Visser, G. J. Mechanism of hydrogen oxidation on a platinum-loaded gas diffusion electrode. J. Appl. Electrochem. 27, 497 (1997).

Giorgi, L. et al. H2 and H2/CO oxidation mechanism on Pt/C, Ru/C and Pt-Ru/C electrocatalysts. J. Appl. Electrochem. 31, 325 (2001).

Anderson, A. B., Sidik, R. A., Narayanasamy, J. & Shiller, P. Theoretical calculation of activation energies for Pt + H+(aq) + e−(U) ↔ Pt-H: activation energy-based symmetry factors in the Marcus normal and inverted regions. J. Phys. Chem. B 107, 4618 (2003).

Zhang, T. & Anderson, A. B. Hydrogen oxidation and evolution on platinum electrodes in base: theoretical study. J. Phys. Chem. C 111, 8644 (2007).

Ernst, S. & Hamann, C. H. The pH-dependence of the hydrogen exchange current density at smooth platinum in alkaline solution (KOH). Electroanal. Chem. Interfacial Electrochem. 60, 97 (1975).

Markovic, N. M., Schmidt, T. J., Stamenkovic, V. & Ross, P. N. Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1, 105 (2001).

Gomez-Marin, A. M., Rizo, R. & Feliu, J. M. Oxygen reduction reaction at Pt single crystals: a critical overview. Catal. Sci. Technol. 4, 1685 (2014).

Sepa, D. B., Vojnovic, M. V. & Damjanovic, A. Kinetics and mechanism of O2 reduction at Pt in alkaline solutions. Electrochim. Acta 25, 1491 (1980).

Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886 (2004).

Spendelow, J. S. & Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 9, 2654 (2007).

Holewinski, A. & Linic, S. Elementary mechanism in electrocatalysis: Revisiting the ORR Tafel slope. J. Electrochem. Soc. 159, H864 (2012).

Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9 (2005).

Wang, B. Recent development of non-platinum catalysts for oxygen reduction reaction. J. Power Sources 152, 1 (2005).

Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339 (2014).

Zhang, J., Sasaki, K. & Adzic, R. R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315, 220 (2007).

Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493 (2007).

Lim, B. et al. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302 (2009).

Vetter, K. J. Electrochemical Kinetics. Theoretical and Experimental Aspects. (Academic Press, 1967).

Bockris, J. O’M. Kinetics of activation controlled consecutive electrochemical reactions: anodic evolution of oxygen. J. Chem. Phys. 24, 817 (1956).

Gnanamuthu, D. S. & Petrocelli, J. V. A generalized expression for the Tafel slope and the kinetics of oxygen reduction on noble metals and alloys. J. Electrochem. Soc. 114, 1036 (1967).

Li, Y. et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133, 7296 (2011).

Conway, B. E. & Bai, L. H2 evolution kinetics at high activity Ni-Mo-Cd electrocoated cathodes and its relation to potential dependence of sorption of H*. Int. J. Hydrogen Energy 11, 533 (1986).

Jaksic, J. M., Vojnovic, M. V. & Krstajic, N. V. K inetic analysis of hydrogen evolution at Ni-Mo alloy electrodes. Electrochim. Acta 45, 4151 (2000).

Damjanovic, A. & Brusic, V. Electrode kinetics of oxygen reduction on oxide-free platinum electrodes. Electrochim. Acta 12, 615 (1967).

Subramanian, N. P. et al. Pt-oxide coverage-dependent oxygen reduction reaction (ORR) kinetics. J. Electrochem. Soc. 159, B531 (2012).

Lyons, M. E. G. & Brandon, M. P. A comparative study of the oxygen evolution reaction on oxidised nickel, cobalt and iron electrodes in base. J. Electroanal. Chem. 641, 119 (2010).

Morcos, I. & Yeager, E. Kinetic studies of the oxygen-peroxide couple on pyrolytic graphite. Electrochim. Acta 15, 953 (1979).

Mukerjee, S., Sprinivasan, S. & Appleby, A. J. Effect of sputtered film of platinum on lower platinum loading electrodes on electrode kinetics of oxygen reduction in proton exchange membrane fuel cells. Electrochim. Acta 38, 1661 (1993).

Tammeveski, K. et al. Oxygen electroreduction on titanium-supported thin Pt films in alkaline solution. Electrochim. Acta 42, 2961 (1997).

Park, S.-M. et al. Electrochemical reduction of oxygen at platinum electrodes in KOH solutions –temperature and concentration effects. J. Electrochem. Soc. 133, 1641 (1986).

Clouser, S. J., Huang, J. C. & Yeager, E. Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J. Appl. Electrochem. 23, 597 (1993).

Bard, A. J . & Faulkner, L. R. ELECTROCHEMICAL METHOD: Fundamentals and Applications. (John Wiley & Sons, Inc., 2010).

Petrii, O. A. & Tsirlina, G. A. Electrocatalytic activity prediction for hydrogen electrode reaction: intuition, art, science. Electrochim. Acta 39, 1739 (1994).

Conway, B. E. & Jerkiewicz, G. Relation of energies and coverage of underpotential and overpotential deposited H at Pt and other metals to the ‘volcano curve’ for cathodic H2 evolution kinetics. Electrochim. Acta 45, 4075 (2000).

Zhgen, Y., Jiao, Y., Jaroniec, M. & Qiao, S. Z. Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 62 (2015).

Conway, B. E. & Tilak, B. V. Behavior and characterization of kinetically involved chemisorbed intermediates in electrocatalysis of gas evolution reactions. Adv. Catal. 38, 1 (1992).

Popczun, E. J. et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem. Int. Ed. 53, 5427 (2014).

Moon, J.-S. et al. The nature of active sites of Ni2P electrocatalysts for hydrogen evolution reaction. J. Catal. 326, 92 (2015).

Markovic, N. M., Sarraf, S. T., Gasteiger, H. A. & Ross, P. N. Hydrogen electrochemistry on platinum lower-index single-crystal surfaces in alkaline solution. J. Chem. Soc. 92, 3719 (1996).

Markovic, N. M., Grgur, B. N. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acid solutions. J. Phys. Chem. B 101, 5405 (1997).

Santos, D. M. F. et al. Platinum-rare earth electrodes for hydrogen evolution in alkaline water electrolysis. Int. J. Hydrogen Energy 38, 3137 (2013).

Zheng, Y. et al. Toward design of synergistically active carbon-based catalysts for electrocatalytic hydrogen evolution. ACS Nano 8, 5290 (2014).

Bai, S. et al. Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt-Pd-Graphene stack structures. Angew. Chem. Int. Ed. 543, 12120 (2014).

Lukowski, M. A. et al. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 135, 10274 (2013).

Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100 (2007).

Kibsgaard, J. & Jaramillo, T. F. Molybdenum phosphosulfide: an active, acid-stable, earth-abundant catalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53, 14433 (2014).

Hansen, M. H. et al. Widely available active sites on Ni2P for electrochemical hydrogen evolution – insights from first principles calculations. Phys. Chem. Chem. Phys. 17, 10823 (2015).

Cao, B. et al. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 19186 (2013).

Couturier, G. & Kirk, D. W. Electrocatalysis of the hydrogen oxidation and of the oxygen reduction reaction on Pt and some alloys in alkaline medium. Electrochim. Acta 32, 995 (1987).

Markovic, N. M., Grgur, B. N. & Ross, P. N. Temperature-dependent hydrogen electrochemistry on platinum low-index single-crystal surfaces in acidic solutions. J. Phys. Chem. B 101, 5405 (1997).

Sepa, D. B. & Vojnovic, M. V. Reaction intermediates as a controlling factor in the kinetics and mechanism of oxygen reduction at platinum electrodes. Electrochim. Acta 26, 781 (1981).

Sepa, D. B., Vojnovic, M. V. & Vracar, L. M. Different views regarding the kinetics and mechanism of oxygen reduction at Pt and Pd electrodes. Electrochim. Acta 32, 129 (1987).

Shao, M.-H., Liu, P. & Adzic, R. R. Superoxide anion is the intermediate in the oxygen reduction reaction on platinum electrodes. J. Am. Chem. Soc. 128, 7408 (2006).

Wang, Y. & Balbuena, P. B. Design of oxygen reduction bimetallic catalysts: ab-initio-derived thermodynamic guidelines. J. Phys. Chem. B 109, 18902 (2005).

Dajanovic, A., Genshaw, M. A. & Bockris, J. O’M. The mechanism of oxygen reduction at platinum in alkaline solutions with special reference to H2O2 . J. Electrochem. Soc. 114, 1107 (1967).

Koper, M. T. M. Theory of multiple proton-electron transfer reactions and its implications for electrocatalysis. Chem. Sci. 4, 2710 (2013).

Perez, J., Gonzalez, E. R. & Tiianelli, E. A. Oxygen electrocatalysis on thin porous coating rotating platinum electrodes. Electrochim. Acta 44, 1329 (1998).

Paulus, U. A., Schmidt, T. J., Gasteiger, H. A. & Behm, R. J. Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating-disk electrode study. J. Electroanal. Chem. 495, 134 (2001).

Antonie, O., Bultel, Y. & Durand, R. Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion. J. Electroanal. Chem. 499, 85 (2001).

Schmidt, T. J., Paulus, U. A., Gasteiger, H. A. & Behm, R. J. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anion. J. Electroanal. Chem. 508, 41 (2001).

Liu, B. & Bard, A. J. Scanning electrochemical microscopy. 45. Study of the kinetics of oxygen reduction on platinum with potential programming of the tip. J. Phys. Chem. B. 106, 12801 (2002).

Takasu, Y. et al. Size effects of platinum particles on the electroreduction of oxygen. Electrochim. Acta 41, 2595 (1996).

Genies, L., Faure, R. & Durand, R. Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim. Acta 44, 1317 (1998).

Vilet, D. F. et al. V. R. Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nature Mater. 11, 1051 (2012).

Strbac, S. The effect of pH on oxygen and hydrogen peroxide reduction on polycrystalline Pt electrode. Electrochim. Acta 56, 1597 (2011).

Lai, Y.-C. et al. Sputtered Pt loading of membrane electrode assemblies in proton exchange membrane fuel cells. Int. J. Energy Res. 36, 918 (2012).

Zinola, C. F., Luna, A. M. C., Triaca, W. E. & Arvia, A. J. Kinetics and mechanism of the electrochemical reduction of molecular oxygen on platinum in KOH: influence of preferred crystallographic orientation. J. Appl. Electrochem. 24, 531 (1994).

Markovic, N. M., Gasteiger, H. A., Grgur, B. N. & Ross, P. N. Oxygen reduction reaction on Pt(111): effects of bromide. J. Electroanal. Chem. 467, 157 (1999).

Markovic, N. Gasteiger, H. & Ross, P. N. Kinetics of oxygen reduction on Pt(hkl) electrodes: implications for the crystallite size effect with supported Pt electrocatalysts. J. Electrochem. Soc. 144, 1591 (1997).

Macia, M. D., Campina, J. M., Herrero, E. & Feliu, J. M. On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J. Electroanal. Chem. 564, 141 (2004).

Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric acid solution: rotating ring-Pt(hkl) disk studies. J. Phys. Chem. 99, 3411 (1995).

Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crysal surfaces in alkaline solution: rotating ring diskPt(hkl) studies. J. Phys. Chem. 100, 6715 (1996).

Drillet, J.-F. et al. Oxygen reduction at Pt and Pt70Ni30 in H2SO4/CH3OH solution. Electrochim. Acta 47, 1983 (2002).

Toda, T., Igarashi, H., Uchida, H. & Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni and Co. J. Electrochem. Soc. 146, 3750 (1999).

Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552 (2009).

Jukk, K. et al. PdPt alloy nanocubes as electrocatalysts for oxygen reduction reaction in acid media. Electrochem. Comm. 56, 11 (2015).

Sepa, D. B., Vojnovic, M. V. & Stojanovic, M. Kinetics of oxygen reduction at iridium electrodes in aqueous solutions. J. Electroanal. Chem. 218, 265 (1987).

Roche, I., Chainet, E., Chatenet, M. & Vondrak, J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J. Phys. Chem. C 111, 1434 (2007).

Rossmeisl, J. et al. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83 (2007).

Smith, R. D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60 (2013).

Song, F. & Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nature Comm. 5, 4477 (2014).

Lyons, M. E. G. & Doyle, R. L. Oxygen evolution at oxidised iron electrodes: a tale of two slopes. Int. J. Electrochem. Sci. 7, 9488 (2012).

Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nature Comm. 4, 4239 (2013).

Shi, H. & Zhao, G. Water oxidation on spinel NiCo2O4 nanoneedles anode: microstructures, specific surface character and the enhanced electrocatalytic performance. J. Phys. Chem. C 118, 25939 (2014).

Miles, M. H. et al. The oxygen evolution reaction on platinum, iridium, ruthenium and their alloys at 80 °C in acid solutions. Electrochim. Acta 23, 521 (1978).

Damjanovic, A., Deyt, A. & Bockris, J. O’M. Kinetics of oxygen evolution and dissolution on platinum electrodes. Electrochim. Acta 11, 791 (1966).

Schmidt, T. J., Ross, P. N. & Markovic, N. M. Temperature-dependent surface electrochemistry on Pt single crystals in alkaline electrolyte: part 1: CO oxidation. J. Phys. Chem. B 105, 12082 (2001).

Schmidt, T. J., Ross, P. N. & Markovic, N. M. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes. Part 2. The hydrogen evolution/oxidation reaction. J. Electroanal. Chem. 524–525, 252 (2002).

Schmidt, T. J., Stamenkovic, V., Ross, P. N. & Markovic, N. M. Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolyte. Part 3. The oxygen reduction reaction. Phys. Chem. Chem. Phys. 5, 400 (2003).

Masa, J., Batchelor-McAuley, C., Schuhmann, W. & Compton, R. G. Koutecky-Levich analysis applied to nanoparticle modified rotating disk electrodes: electrocatalysis or misinterpretation? Nano Res. 7, 71 (2014).

Tavares, M. C., Machado, S. A. S. & Mazo, L. H. Study of hydrogen evolution reaction in acid medium on Pt microelectrodes. Electrochim. Acta 46, 4359 (2001).

Quaino, P. M., Gennero de Chialvo, M. R. & Chialvo, A. C. Hydrogen electro reaction: a complete kinetic description. Electrochim. Acta 52, 7396 (2007).

Arce, M. D., Bonazze, H. L. & Fernández, J. L. Kinetic analysis of the hydrogen electrode reaction in unbuffered media. Theory and studies on Pt microelectrodes. Electrochim. Acta 107, 248 (2013).

Wang, J. X., Zhang, J. & Adzic, R. R. Double-trap kinetic equation for the oxygen reduction reaction on Pt(111) in acidic media. J. Phys. Chem. 111, 12702 (2007).

Cox, N. et al. Electronic structure of the oxygen-evolving complex in photosystem 2 prior to O-O bond formation. Science 345, 804 (2014).

Danilovic, N. et al. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/Metal catalysts. Angew. Chem. 124, 12663 (2012).

Subbaraman, R. et al. Trends in activity for the water electrolkyser reaction on 3d M (Ni, Co, Fe, Mn) hydr(oxy)oxide catalysts. Nature Mater. 11, 550 (2012).

Halck, N. B., Petrykin, V., Krtil, P. & Rossmeisl, J. Beyond the volcano lilmitations in electrocatalysis - oxygen evolution reaction. Phys. Chem. Chem. Phys. 16, 13682 (2014).

Frydendal, R. et al. Enhancing activity for the oxygen evolution reaction: the beneficial interaction of gold with manganese and cobalt oxides. ChemCatChem 7, 149 (2015).

Gonzalez-Flores, D. et al. Heterogeneous water oxidation: surface activity versus amorphization activation in cobalt phosphate catalysts. Angew. Chem. 127, 2502 (2015).

Klingan, K. et al. Water oxidation by amorphous cobalt-based oxides: volume activity and proton transfer to electrolyte bases. ChemSusChem 7, 1301 (2014).