Insertion of a pressure sensing arrayminimally affects hindfoot bone kinematics

Wiley - Tập 8 - Trang 1-9 - 2015
Tassos Natsakis1, Josefien Burg1,2, Greta Dereymaeker1, Ilse Jonkers2, Jos Vander Sloten1
1Department of Mechanical Engineering, KU Leuven, Heverlee, Belgium
2Faculty of Kinesiology and Rehabilitation Science, KU Leuven, Heverlee, Belgium

Tóm tắt

Understanding the development of ankle osteoarthritis (OA) is of high importance and interest; however its causality is poorly understood and several links to joint loading conditions have been made. One way of quantifying joint loading conditions is by measuring the intra-articular pressure distribution during gait simulations performed by in-vitro experimental set-ups. However the effect of inserting a pressure sensing array in the ankle joint could potentially disturb the proper kinematics and therefore the loading conditions. In this study, we performed in-vitro gait simulations in 7 cadaveric feet, before and after inserting a pressure sensing array and quantified the effect on the joints range of motion (ROM). The gait was simulated with a stance phase duration of one second using a custom build cadaveric gait simulator (CGS). The results show a limited effect in the ROM for all the joints of the hind foot, not exceeding the variability observed in specimens without a sensor. However, no consistent direction (increase/decrease) can be observed. The results suggest that even though the effect of inserting a pressure sensing array is minimal, it needs to be evaluated against the demands/requirements of the application.

Tài liệu tham khảo

Procter P, Paul J. Ankle joint biomechanics. J Biomech. 1982; 15(9):627–34. Buckwalter JA, Mankin HJ, Grodzinsky AJ. Articular cartilage and Osteoarthritis. Instr Course Lect -American Acad Orthop Surg. 2005; 54:465–80. Anderson DD, Van Hofwegen C, Marsh JL, Brown TD. Is elevated contact stress predictive of post-traumatic osteoarthritis for imprecisely reduced tibial plafond fractures?J Orthop Res. 2011; 29(1):33–9. Buckwalter JA, Anderson DD, Brown TD, Tochigi Y, Martin Ja. The roles of mechanical stresses in the pathogenesis of osteoarthritis: implications for treatment of joint injuries. Cartilage. 2013; 4(4):286–94. Krause FG, Schmid T. Ankle arthrodesis versus total ankle replacement: how do I decide?Foot Ankle Clin. 2012; 17(4):529–43. Valderrabano V, Horisberger M, Russell I, Dougall H, Hintermann B. Etiology of ankle osteoarthritis. Clin Orthop Relat Res. 2009; 467(7):1800–6. Horisberger M, Valderrabano V. Ankle Osteoarthritis - a review of the current state of knowledge. Eur Musculoskelet Rev. 2011; 6(2):114–8. Anderson DD, Goldsworthy JK, Li W, James Rudert M, Tochigi Y, Brown TD. Physical validation of a patient-specific contact finite element model of the ankle. J Biomech. 2007; 40(8):1662–9. Anderson DD, Goldsworthy JK, Shivanna K, Grosland NM, Pedersen DR, Thomas TP. Intra-articular contact stress distributions at the ankle throughout stance phase-patient-specific finite element analysis as a metric of degeneration propensity. Biomech Model Mechanobiol. 2006; 5(2–3):82–9. Li G, Wan L, Kozanek M. Determination of real-time in-vivo cartilage contact deformation in the ankle joint. J Biomech. 2008; 41(1):128–36. Sasimontonkul S, Bay BK, Pavol MJ. Bone contact forces on the distal tibia during the stance phase of running. J Biomech. 2007; 40(15):3503–9. Moissenet F, Chèze L, Dumas R. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J Biomech. 2014; 47(1):50–8. Calhoun JH, Li F, Ledbetter BR, Viegas SF. A comprehensive study of pressure distribution in the ankle joint with inversion and eversion. Foot Ankle Int. 1994; 15(3):125–33. Matricali GA, Bartels W, Labey L, Dereymaeker GPE, Luyten FP, Vander Sloten J. High inter-specimen variability of baseline data for the tibio-talar contact area. Clin Biomech. 2009; 24(1):117–120. Suckel A, Muller O, Wachter N, Kluba T. In vitro measurement of intraarticular pressure in the ankle joint Knee Surgery. Sport Traumatol Arthrosc. 2010; 18(5):664–8. Anderson AE, Ellis BJ, Maas SA, Peters CL, Weiss JA. Validation of finite element predictions of cartilage contact pressure in the human hip joint. J Biomech Eng. 2008; 130(5):1–10. Potthast W, Lersch C, Segesser B, Koebke J, Brüggemann G-P. Intraarticular pressure distribution in the talocrural joint is related to lower leg muscle forces. Clin Biomech (Bristol, Avon). 2008; 23(5):632–9. Jung H-G, Parks BG, Nguyen A, Schon LC. Effect of tibiotalar joint arthrodesis on adjacent tarsal joint pressure in a cadaver model. Foot ankle Int Am Orthop Foot Ankle Soc Swiss Foot Ankle Soc. 2007; 28(1):103–8. Lee DG, Davis BL. Assessment of the effects of diabetes on midfoot joint pressures using a robotic gait simulator. Foot ankle Int Am Orthop Foot Ankle Soc Swiss Foot Ankle Soc. 2009; 30(8):767–72. Michelson JD, Checcone M, Kuhn T, Varner K. Intra-articular load distribution in the human ankle joint during motion. Foot Ankle Int. 2001; 22(3):226–33. Peeters K, Natsakis T, Burg J, Spaepen P, Jonkers I, Dereymaeker G. An in vitro approach to the evaluation of foot-ankle kinematics: performance evaluation of a custom-built gait simulator. Proc Inst Mech Eng H. 2013; 227(9):955–67. Bogey R, Perry J, Gitter A. An EMG-to-force processing approach for determining ankle muscle forces during normal human gait. IEEE Trans Neural Syst Rehabil Eng. 2005; 13(3):302–10. Natsakis T, Peeters K, Burg F, Dereymaeker G, Vander Sloten J, Jonkers I. Specimen-specific tibial kinematics model for in vitro gait simulations. Proc Inst Mech Eng Part H J Eng Med. 2012; 227(4):454–63. Natsakis T, Burg J, Dereymaeker G, Jonkers I, Vander Sloten J. Inertial control as novel technique for in vitro gait simulations. J Biomech. 2015; 48(2):392–5. Okita N, Meyers S, Challis JH, Sharkey N. Midtarsal joint locking: new perspectives on an old paradigm. J Orthop Res. 2014; 32(1):110–5.