Innovative gait robot for the repetitive practice of floor walking and stair climbing up and down in stroke patients

Stefan Hesse1, Andreas Waldner2,3, Christopher Tomelleri2
1Medical Park Humboldtmühle Berlin, Department Neurological Rehabilitation Charité - University Medicine, Berlin, Germany
2Privatklinik Villa Melitta, Neurological Rehabilitation, Bozen, Italy
3Research Department for Neurorehabilitation South Tyrol, Bozen, Italy

Tóm tắt

Stair climbing up and down is an essential part of everyday's mobility. To enable wheelchair-dependent patients the repetitive practice of this task, a novel gait robot, G-EO-Systems (EO, Lat: I walk), based on the end-effector principle, has been designed. The trajectories of the foot plates are freely programmable enabling not only the practice of simulated floor walking but also stair climbing up and down. The article intended to compare lower limb muscle activation patterns of hemiparetic subjects during real floor walking and stairs climbing up, and during the corresponding simulated conditions on the machine, and secondly to demonstrate gait improvement on single case after training on the machine. The muscle activation pattern of seven lower limb muscles of six hemiparetic patients during free and simulated walking on the floor and stair climbing was measured via dynamic electromyography. A non-ambulatory, sub-acute stroke patient additionally trained on the G-EO-Systems every workday for five weeks. The muscle activation patterns were comparable during the real and simulated conditions, both on the floor and during stair climbing up. Minor differences, concerning the real and simulated floor walking conditions, were a delayed (prolonged) onset (duration) of the thigh muscle activation on the machine across all subjects. Concerning stair climbing conditions, the shank muscle activation was more phasic and timely correct in selected patients on the device. The severely affected subject regained walking and stair climbing ability. The G-EO-Systems is an interesting new option in gait rehabilitation after stroke. The lower limb muscle activation patterns were comparable, a training thus feasible, and the positive case report warrants further clinical studies.

Từ khóa


Tài liệu tham khảo

Kolominsky-Rabas PL, Heuschmann PU: Incidence, etiology and long-term prognosis of stroke. Fortschr Neurol Psychiatr 2002, 70: 657-62. 10.1055/s-2002-35857

Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS: Recovery of walking function in stroke patients: the Copenhagen stroke study. Arch Phys Med Rehabil 1995, 76: 27-32. 10.1016/S0003-9993(95)80038-7

Carr J, Shepherd R: Stroke Rehabilitation: Guidelines for exercises and training. London: Butterworth Heinemann; 2003.

Barbeau H, Visintin M: Optimal outcomes obtained with body-weight support combined with treadmill training in stroke subjects. Arch Phys Med Rehabil 2003,84(10):1458-65. 10.1016/S0003-9993(03)00361-7

Dobkin BH, Apple D, Barbeau H, Basso M, Behrman A, Deforge D, Ditunno J, Dudley G, Elashoff R, Fugate L, Harkema S, Saulino M, Scott M: Methods for a randomized trial of weight-supported treadmill training versus conventional training for walking during inpatient rehabilitation after incomplete traumatic spinal cord injury. Neurorehabil Neural Repair 2003,17(3):153-67. 10.1177/0888439003255508

Colombo G, Joerg M, Schreier R, Dietz V: Treadmill training of paraplegic patients using a robotic orthosis. J Rehabil Res Dev 2000,37(6):693-700.

Veneman JF, Kruidhof R, Hekman EE, Ekkelenkamp R, Van Asseldonk EH, van der Kooij H: Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng 2007,15(3):379-86. 10.1109/TNSRE.2007.903919

Mankala K, Banala S, Agrawal S: Novel swing-assist un-motorized exoskeletons for gait training. J Neuroeng Rehabil 2009, 6: 24. 10.1186/1743-0003-6-24

Mantone J: Getting a leg up? Rehab patients get an assist from devices such as HealthSouth's AutoAmbulator, but the robots' clinical benefits are still in doubt. Mod Healthc 2006,36(7):58-60.

Hesse S, Uhlenbrock D: A mechanized gait trainer for restoration of gait. J Rehab Res Dev 2000,37(6):701-8.

Schmidt H, Werner C, Bernhardt R, Hesse S, Krüger J: Gait rehabilitation machines based on programmable footplates. J Neuroeng Rehabil 2007, 4: 2. 10.1186/1743-0003-4-2

Freivogel S, Mehrholz J, Husak-Sotomayor T, Schmalohr D: Gait training with the newly developed 'LokoHelp'-system is feasible for non-ambulatory patients after stroke, spinal cord and brain injury. A feasibility study. Brain Inj 2008,22(7-8):625-32. 10.1080/02699050801941771

Husemann B, Müller F, Krewer C, Heller S, Koenig E: Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke. A randomized controlled pilot study. Stroke 2007,38(2):349-54. 10.1161/01.STR.0000254607.48765.cb

Pohl M, Werner C, Holzgraefe M, Kroczek G, Mehrholz J, Wingendorf I, Hoölig G, Koch R, Hesse S: Repetitive locomotor training and physiotherapy improve walking and basic activities of daily living in subacute, nonambulatory stroke patients: a single-blind, randomised multi-centre trial (DEutsche GAngtrainerStudie, DEGAS). Clinical Rehabilitation 2007,21(1):17-27. 10.1177/0269215506071281

Regnaux JP, Saremi K, Marehbian J, Bussel B, Dobkin BH: An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait. Neurorehabil Neural Repair 2008,22(4):348-54.

Paolucci S, Braagoni M, Coiro P, De Angelis D, Fusco FR, Morelli D, Venturiero V, Pratesi L: Quantification of the probability of reaching mobility indipendend at discharge from the rehabilitation hospital in non walking early ischemic stroke patient: a multivariate study. Cerebrovasc Dis 2008,26(1):16-22. 10.1159/000135648

Schmidt H, Sorowka D, Hesse S, Bernhardt R: Development of a robotic walking simulator for gait rehabilitation. Biomed Tech (Berl) 2003,48(10):281-6. 10.1515/bmte.2003.48.10.281

Behrman AL, Harkema SJ: Locomotor training after human spinal cord injury: A series of case studies. Physical Therapy 2000,80(7):688-700.

Winter DA: Foot trajectory in human gait: a precise and multifactorial motor control task. Phys Ther 1992,72(1):45-53.

Winter DA: Biomechanics and control of human movement. Second edition. Wiley Inter Science; 1990:212-32.

Hogan N: The organizing principle for a class of voluntary movements. Journal of Neuroscience 1984,11(4):2745-54.

Zachazewski JE, Riley PO, Krebs DE: Biomechanical analysis of body mass transfer during stair ascent and descent of healthy subjects. J Rehabil Res Dev 1993,30(4):412-22.

McFadyen BJ, Winter DA: An integrated biomechanical analysis of normal stair ascent and descent. J Biomech 1988,21(9):733-44. 10.1016/0021-9290(88)90282-5

Hidler JM, Wall AE: Alterations in muscle activation patterns during robotic-assisted walking. Clin Biomech 2005, 20: 184-93. 10.1016/j.clinbiomech.2004.09.016

Giakas G, Baltzopoulos V: A comparison of automatic filtering techniques applied to biomechanical walking data. J Biomech 1997, 30: 847-50. 10.1016/S0021-9290(97)00042-0

Simons W, Yang K: Differentiation of human motion data using combined spline and least squares concept. Journal of Biomechanical Engineering 1991, 113: 348-51. 10.1115/1.2894894

van Asseldonk EH, Veneman JF, Ekkelenkamp R, Buurke JH, van der Helm FC, van der Kooij H: The Effects on Kinematics and Muscle Activity of Walking in a Robotic Gait Trainer During Zero-Force Control. IEEE Trans Neural Syst Rehabil Eng 2008,16(4):360-70. 10.1109/TNSRE.2008.925074

Den Otter AG, Guerts AC, Mulder T, Duysens J: Abnormalities in the temporal patterning of lower extremity muscle activity in hemiparetic gait. Gait Posture 2007,25(3):342-52. 10.1016/j.gaitpost.2006.04.007

Knuttson E, Richards C: Different types of disturbed motor control in gait of hemiparetic patients. Brain 1979, 102: 405-30. 10.1093/brain/102.2.405

Hussein S, Schmidt H, Volkmar M, Werner C, Helmich I, Piorko F, Krüger J, Hesse S: Muscle coordination in healthy subjects during floor walking and stair climbing in robot assisted gait training. Conf Proc IEEE Eng Med Biol Soc 2008, 1961-4.