Innate immune memory: An evolutionary perspective

Immunological Reviews - Tập 283 Số 1 - Trang 21-40 - 2018
Benjamin Gourbal1, Silvain Pinaud1, Gerold J. M. Beckers2, J.W.M. van der Meer3, Uwe Conrath2, Simone J.C.F.M. Moorlag4,3
1Interactions Hosts Pathogens Environments UMR 5244 University of Perpignan Via Domitia CNRS IFREMER, Univ. Montpellier Perpignan France
2Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
3Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
4Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES) University of Bonn Bonn Germany

Tóm tắt

SummaryOver the last decades, there was increasing evidence for the presence of innate immune memory in living organisms. In this review, we compare the innate immune memory of various organisms with a focus on phylogenetics. We discuss the acquisition and molecular basis of immune memory and we describe the innate immune memory paradigm and its role in host defense during evolution. The molecular characterization of innate immunological memory in diverse organisms and host‐parasite systems reconciles mechanisms with phenomena and paves the way to molecular comprehension of innate immune memory. We also revise the traditional classification of innate and adaptive immunity in jawed vertebrates. We emphasize that innate immune responses have the capacity to be “primed” or “trained”, thereby exerting a yet unknown type of immunological memory upon re‐infection.

Từ khóa


Tài liệu tham khảo

10.1038/352565a0

Combes C, 2000, Selective pressure in host‐parasite systems, J Soc Biol, 194, 19

10.1002/eji.200790026

10.1016/j.cell.2006.02.015

10.1016/j.molcel.2014.03.011

10.1038/35012221

10.1002/bies.201300145

10.3389/fimmu.2014.00459

10.1016/j.cell.2006.02.001

10.1111/j.1461-0248.2007.01028.x

10.1111/eva.12294

10.1146/annurev-phyto-080614-120132

10.1016/j.smim.2016.05.004

10.1016/j.smim.2016.05.006

10.1016/j.chom.2011.04.006

10.1002/embj.201387651

Coustau C, 2016, A novel mechanism of immune memory unveiled at the invertebrate‐parasite interface, Trends Parasitol, 32, 353, 10.1016/j.pt.2016.02.005

10.3389/fimmu.2017.00539

10.1016/j.micinf.2004.10.002

10.1159/000345909

10.1126/science.1190689

10.1016/j.cub.2006.04.047

10.1038/425037a

10.1371/journal.ppat.1005361

10.1016/j.micinf.2007.09.002

10.1016/j.it.2005.02.001

10.1146/annurev-phyto-082712-102340

10.1016/S1360-1385(02)02244-6

10.1146/annurev-arplant-042811-105606

Jakab G, 2001, β‐Aminobutyric acid‐induced resistance in plants, Plant Physiol, 107, 29

10.1016/j.chom.2012.06.006

10.1128/CVI.00688-13

10.1146/annurev.biochem.76.061705.090740

10.1016/S0065-2776(08)60676-8

10.1038/302575a0

10.1016/S1096-4959(01)00306-2

10.1016/j.cub.2004.06.009

10.1038/nature02740

10.1016/S1074-7613(01)00198-4

10.1016/S0092-8674(00)80412-2

10.1073/pnas.230096397

10.1371/journal.pbio.0040229

10.1126/science.1116887

10.1093/molbev/msn087

10.1126/science.1088069

10.1371/journal.ppat.1004631

Tetreau G, 2017, Specific pathogen recognition by multiple innate immune sensors in an invertebrate, Front Immunol, 8, 1249, 10.3389/fimmu.2017.01249

10.1007/s10875-005-8065-4

10.1126/science.331476

10.1097/00007890-196805000-00002

10.1126/science.441730

10.1038/270219a0

10.1111/j.1365-3083.1992.tb02857.x

10.1046/j.1365-313X.1999.00265.x

10.1016/j.tplants.2006.09.005

10.1016/j.it.2014.05.004

10.1038/nri.2016.77

10.1016/j.jplph.2011.09.005

Flor H, 1942, Inheritance of pathogenicity in Melampsoralini, Phytopathology, 32, 653

Flor H, 1971, Current status of the gene‐for‐gene concept, Annu Rev Phytopathol, 9, 323, 10.1146/annurev.py.09.090171.001423

10.1038/nrg2812

10.1038/nature05286

10.1016/j.mib.2015.10.006

10.1016/S0092-8674(03)00040-0

10.1038/cdd.2011.37

10.1126/science.1211641

10.1016/0092-8674(94)90544-4

10.1104/pp.103.036749

10.1016/j.pbi.2010.04.006

10.1111/nph.13286

10.1105/tpc.007591

10.1016/j.cell.2006.03.037

10.1105/tpc.104.023382

10.1038/ni1253

10.1038/nrmicro2295

10.1046/j.1365-313X.1999.00451.x

10.1038/35074106

10.3109/1040841X.2012.706249

10.1038/nri3398

10.1126/science.aaf1098

10.1126/science.1251086

10.1016/j.it.2013.04.004

10.4049/jimmunol.1303211

10.1084/jem.20141172

10.1038/ni.1953

10.1038/nature07665

10.1111/j.0105-2896.2005.00319.x

10.1146/annurev.cellbio.22.010605.093317

10.1016/j.plrev.2009.12.001

10.1111/j.1365-2656.2011.01872.x

10.1371/journal.ppat.1005178

10.1038/ni0202-121

10.1016/j.micinf.2013.11.010

10.1098/rstb.2008.0157

10.4161/rna.24022

10.1146/annurev-micro-090816-093830

10.1038/nature15386

Marakalala MJ, 2013, Dectin‐ 1 plays a redundant role in the immunomodulatory activities of beta‐glucan‐rich ligands in vivo, Microbes Infect, 15, 511, 10.1016/j.micinf.2013.03.002

10.1128/IAI.31.2.716-722.1981

10.1186/1742-2094-11-14

10.1128/IAI.00224-10

10.1126/science.1256999

10.1073/pnas.85.5.1620

10.1016/j.immuni.2010.02.008

10.1038/nature05836

10.1038/nature09589

10.1016/j.molcel.2013.07.010

10.1016/j.cell.2012.12.018

10.1038/ni.3257

10.1038/s41598-017-12110-2

Tribouley J, 1978, [Effect of Bacillus Callmette Guerin (BCG) on the receptivity of nude mice to Schistosoma mansoni], C R Seances Soc Biol Fil, 172, 902

10.1111/j.1365-3083.1992.tb03132.x

10.1128/IAI.51.2.668-674.1986

10.1080/02681218880000401

10.1099/00222615-30-3-183

10.1038/nature05762

10.1038/ni.2984

10.4049/jimmunol.1500424

10.1016/j.immuni.2015.02.008

10.1084/jem.20111760

10.1016/j.immuni.2015.05.011

10.1016/j.immuni.2013.12.011

10.1105/tpc.108.062158

RyalsJA NeuenschwanderUH WillitsMG MolinaA SteinerHY HuntMD.Systemic acquired resistance.Plant Cell.1996;8:1809‐1819.

10.1105/tpc.114.131938

10.1007/s00709-012-0459-6

10.1105/tpc.112.103564

10.1038/415977a

10.3389/fpls.2015.00940

10.1146/annurev-phyto-082712-102314

10.1016/j.tplants.2005.05.009

10.5423/PPJ.NT.10.2014.0112

10.2307/3869945

10.1016/j.pbi.2004.07.005

10.1016/S0092-8674(03)00429-X

10.1016/j.yexcr.2013.11.010

10.1016/j.tig.2011.06.006

10.1016/j.cub.2004.07.007

10.1016/j.bbagrm.2011.07.001

Badeaux AI, 2013, Emerging roles for chromatin as a signal integration and storage platform, Nat Rev, 14, 211, 10.1038/nrm3545

10.1111/j.1462-5822.2012.01785.x

10.1101/gad.947102

10.1016/j.tplants.2014.01.014

10.1038/emboj.2011.103

10.1016/j.tig.2009.09.013

10.1074/mcp.O113.036335

10.1093/embo-reports/kvf053

10.1016/S1097-2765(03)00482-9

10.1139/bcb-2015-0031

10.1126/science.1153996

10.1101/gad.927301

10.1146/annurev-arplant-042110-103806

10.4161/epi.2.2.4404

10.1038/embor.2010.186

10.1016/j.cell.2005.06.026

Cruz X, 2005, Do protein motifs read the histone code?, BioEssays, 27, 164, 10.1002/bies.20176

10.1126/science.1190614

10.1016/j.cell.2007.08.016

10.1186/s12864-017-3705-7

10.1371/journal.ppat.0030026

10.1016/j.jinsphys.2015.07.004

Honti V, 2013, The cell‐mediated immunity of Drosophila melanogaster: Hemocyte lineages, immune compartments, microanatomy and regulation, Dev Comp Immunol, 42, 47, 10.1016/j.dci.2013.06.005

10.1038/ncomms15451

10.1093/gbe/evv041

10.1016/j.dci.2014.10.016

Lampe L, 2017, The role of microRNAs in Anopheles biology‐an emerging research field, Parasite Immunol, 39, 1, 10.1111/pim.12405

Huang Q, 2015, Honey bee microRNAs respond to infection by the microsporidian parasite Nosema ceranae, Sci Rep, 5, 17494, 10.1038/srep17494

10.1016/j.virol.2016.12.009

10.1016/j.zool.2016.05.004

10.1371/journal.ppat.1004713

10.1371/journal.pntd.0005246

Gomez‐Diaz E, 2014, Insights into the epigenomic landscape of the human malaria vector Anopheles gambiae, Front Genet, 5, 277

Heitmueller M, 2017, Epigenetic mechanisms regulate innate immunity against uropathogenic and commensal‐like Escherichia coli in the surrogate insect model Galleria mellonella, Infect Immun, 85, e00336, 10.1128/IAI.00336-17

10.1016/j.coi.2014.02.006

10.1242/jeb.085191

10.1016/j.fsi.2015.01.036

Escoubas J‐M, 2015, Encyclopedia of Immunology, 417

10.1016/j.immuni.2012.12.001

10.1073/pnas.1202870109

10.1002/eji.201343403

10.1016/j.cell.2017.11.034

10.4049/jimmunol.1202786

10.1128/mBio.01817-14

10.1016/j.cell.2017.12.013

Walachowski S, 2017, Molecular analysis of a short‐ term model of beta‐glucans‐trained immunity highlights the accessory contribution of GM‐CSF in priming mouse macrophages response, Front Immunol, 8, 1089, 10.3389/fimmu.2017.01089

10.1126/science.1147113

10.1073/pnas.0605423104

10.1126/science.1170025

10.1111/j.1365-313X.2012.04981.x

10.1038/ng.798

10.1038/ncomms8658

10.1038/nature00962

10.1111/nph.14298

10.1105/tpc.16.00898

10.1105/tpc.10.9.1571

Tassetto M, 2017, Circulating immune cells mediate a systemic RNAi‐based adaptive antiviral response in Drosophila, Cell, 169, e313

10.1016/j.fsi.2013.05.013

10.1016/j.dci.2016.03.002

10.1016/j.fsi.2016.08.032

10.1007/PL00000901

10.1371/journal.ppat.1001115

10.1016/j.ibmb.2008.02.002

10.1016/j.cub.2015.05.047

10.1073/pnas.1521239113

10.4049/jimmunol.174.10.6153

Bilej M, 2006, An invertebrate TNF functional analogue activates macrophages via lectin‐saccharide interaction with ion channels, Int Immunol, 18, 1663, 10.1093/intimm/dxl100

10.1016/j.ydbio.2006.08.065

10.1016/j.dci.2008.02.006

10.1016/j.fsi.2013.01.005

10.2307/3284621

10.1080/19336934.2016.1182269

Lamarck J, 1809, Philosophie Zoologique, Ou Exposition des Considérations Relatives a L'histoire Naturelle des Animaux

10.1104/pp.111.187468

10.1104/pp.111.187831

10.1104/pp.111.191593

10.1104/pp.010744

10.1094/MPMI-19-0577

Ptashne M, 2013, Faddish stuff: epigenetics and the inheritance of acquired characteristics, FASEB J, 27, 1, 10.1096/fj.13-0101ufm

10.1016/S0145-305X(99)00038-5

Moret Y, 2006, “Trans‐generational immune priming”: specific enhancement of the antimicrobial immune response in the mealworm beetle, Tenebrio molitor, Proceedings, 273, 1399

10.1111/mec.14190

10.1016/j.ibmb.2007.07.010

10.1016/j.dci.2009.02.009

10.1074/jbc.270.11.6199

10.1371/journal.pone.0159635

10.1371/journal.pone.0073005

10.1371/journal.ppat.1005015

10.4161/viru.28367

10.1098/rsbl.2015.0885

10.1186/1742-9994-9-25

10.1038/srep21166

10.1016/j.ibmb.2012.10.005

10.4161/viru.26119

Mukherjee K, 2017, Experimental evolution of resistance against Bacillus thuringiensis in the insect model host Galleria mellonella results in epigenetic modifications, Virulence, 8, 1618, 10.1080/21505594.2017.1325975

10.1146/annurev.genom.9.081307.164445

10.1098/rstb.2008.0137

10.1242/jeb.019752

10.1126/science.1260638

10.1126/science.1255023

10.1126/science.1258699

10.1016/j.vaccine.2016.11.079

10.1038/nature24271