Inhibitory activity of Indian spice plant Cinnamomum zeylanicum extracts against Alternaria solani and Curvularia lunata, the pathogenic dematiaceous moulds

Ajay Kumar Mishra1, Ashish Kumar Mishra1, HK Kehri2, Bechan Sharma1, Abhay K. Pandey1
1Department of Biochemistry, University of Allahabad, Allahabad, India
2Department of Botany, University of Allahabad, Allahabad, India

Tóm tắt

Abstract Background Dematiaceous moulds are pathogenic microorganisms and act as etiological agents of mycoses with different degrees of severity in humans and animals. These moulds also cause loss of food crops and storage food products. The information regarding antimicrobial efficacy of the plant preparations on these moulds is scanty. The present study reveals phytochemical characterization and the effect of bark and leaf extracts of Indian spice plant, Cinnamomum zeylanicum (Cz), against the growth of two species of dematiaceous moulds, Alternaria solani and Curvularia lunata. Methods Cz bark and leaf samples were sequentially extracted in different solvents using Soxhlet apparatus. Phytochemical analyses of extracts were done as per standard protocols. The antifungal bioassay of extracts was done by hanging drop technique. The inhibition of fungal spore germination was monitored under influence of three different concentrations of extracts. Results The lowest test concentration (50 μg/ml) of extracts of Cz bark prepared into acetone and that of Cz leaf into petroleum ether and ethanol exhibited complete inhibition (100%) of spore germination in both the moulds. At 100 μg/ml concentration all the extracts showed about 50 to 100% inhibition. However, the treatment of the spores of the two fungal species with highest concentration (500 μg/ml) of bark and leaf extracts in all the solvents showed 100% fungicidal activity as it completely arrested the germination of spores. Relatively lower activity of aqueous extracts at 50 and 100 μg/ml concentrations suggests that the antifungal ingredients present in Cz bark and leaf are more soluble in organic solvents than water. Conclusion The results demonstrated that the Cz bark and leaves contain certain fungicidal constituents exhibiting potential antimould activity against A. solani and C. lunata.

Từ khóa


Tài liệu tham khảo

Warnock DW, Johnson EM: Clinical manifestations and management of hyalohypomycosis, phaeohypomycosis and other uncommon forms of fungal infection in the compromised patient. Fungal infection in the compromised patient. Edited by: Warnock DW, Richardson MD. 1991, 756-789. Chichester: John Willey & Sons

Wilhelmus KR: Climatology of dematiaceous fungal keratitis. Am J Ophthalmol. 2005, 140: 1156-1157. 10.1016/j.ajo.2005.07.032

Tamsikar J, Naidu J, Singh SM: Phaeohyphomycotic sebaceous cyst due to Cladosporium cladosporioides: case report and review of literature. J Med Mycol. 2006, 16: 55-57.

Minotto R, Bernardi CDV, Mallman LF, Edelweiss MIA, Scroferneker ML: Chromoblastomycosis: a review of 100 cases in the state of Rio Grande do Sul, Brazil. J Am Acad Dermatol. 2001, 44: 585-592. 10.1067/mjd.2001.112220

Schwartz R: Superficial fungal infections. Lancet. 2004, 364: 1173-1182. 10.1016/S0140-6736(04)17107-9

Knudtson WU, Kirkbride CA: Fungi associated with bovine abortion in the northern plains states (USA). J Vet Diagn Invest. 1992, 4 (2): 181-185.

Pitt JI, Hocking AD, Bhudhasamai K, Miscamble BF, Wheeler KA, Tanboon-Ek P: The normal mycoflora of commodities from Thailand. 2. Beans, rice, small grains and other commodities. Intl J Food Microbiol. 1994, 23: 35-43. 10.1016/0168-1605(94)90220-8.

Larone DH: Medically Important Fungi – A Guide to Identification. 1995, Washington DC: ASM Press, 3

St-Germain G, Summerbell R: Identifying Filamentous Fungi – A Clinical Laboratory Handbook. 1996, Belmont, California: Star Publishing Company, 1

Benoit MA, Mathur SB: Identification of species of Curvularia on rice seed. Proc Int Seed Testing Assoc. 1970, 35: 99-119.

Mathews HB, Lucier WG, Fisher KD: Medicinal herbs in the United States: Research needs. Environ Health Perspec. 1999, 107: 773-778. 10.2307/3454572.

Bagghi AK: Alternative medicine – Old wine in a new bottle. J Indian Med Assoc. 2000, 98 (6): 332-333.

Sener B, Bingol F, Erdogan I, Bowers WS, Evans PH: Biological activity of some Turkish medicinal plants. Pure Appl Chem. 1998, 70: 403-406. 10.1351/pac199870020403.

Delaquis PJ, Mazza G: Antimicrobial properties of isothiocyanate in food preservation. Food Technol. 1995, 49: 73-84.

Brul S, Coote P: Preservative agents in foods: mode of action and microbial resistance mechanisms. Int J Food Microbiol. 1999, 50: 1-17. 10.1016/S0168-1605(99)00072-0

Burt S: Essential oils: their antibacterial properties and potential applications in foods – a review. Int J Food Microbiol. 2004, 94: 223-253. 10.1016/j.ijfoodmicro.2004.03.022

Lopez Diaz TML, González CJ, Moreno B, Otero A: Effect of temperature, water activity, pH and some antimicrobials on the growth of Penicillium oslonii isolated from the surface of Spanish fermented meat sausage. Food Microbiol. 2002, 19: 1-7. 10.1006/fmic.2001.0440.

Sahin F, Gulluce M, Daferera D, Sokmen A, Sokmen M, Polissiou M, Agar G, Ozer H: Biological activities of the essential oils and methanol extract of Origanum vulgare ssp vulgare in the Eastern Anatolia region of Turkey. Food Control. 2004, 15: 549-557. 10.1016/j.foodcont.2003.08.009.

Duarte MCT, Figueira GM, Sartoratto A, Rehder VLG, Delarmelina C: Anti-Candida activity of Brazilian medicinal plants. J Ethnopharm. 2005, 97: 305-311. 10.1016/j.jep.2004.11.016.

Mishra AK, Mishra A, Bhargava A, Pandey AK: Antimicrobial activity of essential oils from the leaves of Cinnamomum spp. Natl Acad Sci Lett. 2008, 31: 341-345.

Pandey AK: Anti-staphylococcal activity of a pan-tropical aggressive and obnoxious weed Parthenium histerophorus: an in vitro study. Natl Acad Sci Lett. 2007, 30: 383-386.

Parekh J, Karathia N, Chanda S: Antibacterial activity of Bauhinia variegata. J Biomed Res. 2006, 9: 53-56.

Finar IL: Organic chemistry-vol 2: Stereochemistry and the chemistry of natural products. 2003, 769-71. Delhi: Pearson Education (Singapore) India branch, 5

Sadasivam S, Manickam A: Biochemical Methods. 1996, 192-93. New Delhi: New Age International (P) Ltd, 2

Humphries J: 1974, 452-Bacteriology. London: John Murray Albermack Street

Ranasinghe L, Jayawardena B, Abeywickrama K: Fungicidal activity of essential oils of Cinnamomum zeylanicum (L) and Syzygium aromaticum (L) Merr et LM Perry against crown rot and anthracnose pathogens isolated from banana. Lett App Microbiol. 2002, 35: 208-11. 10.1046/j.1472-765X.2002.01165.x.

Montes BR, Carvajal M: Control of Aspergillus flavus in maize with plant essential oils and their components. J Food Prot. 1998, 61: 616-619.

Delespaul Q, Billerbeck VG, Roques CG, Michel G, Marquier-Vinuales C, Bessiere JM: The antifungal activity of essential oils as determined by different screening methods. J Essential Oil Res. 2000, 12: 256-266.

Mahomoodally MF, Gurib-Fakim A, Subratty AH: Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. Pharmaceutical Biol. 2005, 43: 237-242. 10.1080/13880200590928825.

Cordell GA, Quinn-Beattie ML, Farnsworth NR: The potential of alkaloids in drug discovery. Phytother Res. 2001, 15: 183-205. 10.1002/ptr.890

Boussaada O, Chriaa J, Nabli R, Ammar S, Saidana D, Mahjoub MA, Chraeif I, Helal AN, Mighri Z: Antimicrobial and antioxidant activities of methanol extracts of Evax pygmaea (Asteraceae) growing wild in Tunisia. World J Microbiol Biotechnol. 2008, 24: 1289-1296. 10.1007/s11274-007-9600-7.