Inhibition of Hec1 as a novel approach for treatment of primary liver cancer

Lynn YL Huang1, Chia-chi Chang1, Ying-Shuan Lee2, Jiann-Jyh Huang2, Shih-Hsien Chuang2, Jia-Ming Chang2, Kuo-Jang Kao1, Gillian MG Lau1, Pei-Yi Tsai2, Chia-wei Liu2, Her-Sheng Lin2, Robert G. Gish3,1, Johnson YN Lau1
1Taivex Therapeutics Corporation, Taipei City, Taiwan, ROC
2Development Center for Biotechnology, New Taipei City, Taiwan, ROC
3University of California, San Diego, La Jolla, USA

Tóm tắt

Highly expressed in cancer protein 1 (Hec1) is an oncogene and a promising molecular target for novel anticancer drugs. The purpose of this study was to evaluate the potential of a Hec1 inhibitor, TAI-95, as a treatment for primary liver cancer. In vitro and in vivo methods were used to test the activity of TAI-95. Gene expression analysis was used to evaluate clinical correlation of the target. In vitro growth inhibition results showed that TAI-95 has excellent potency on a wide range of primary liver cancer cell lines (hepatoblastoma or hepatocellular carcinoma) (GI50 30–70 nM), which was superior to sorafenib and other cytotoxic agents. TAI-95 was relatively inactive in non-cancerous cell lines (GI50 > 10 μM). TAI-95 disrupts the interaction between Hec1 and Nek2 and leads to degradation of Nek2, chromosomal misalignment, and apoptotic cell death. TAI-95 showed synergistic activity in selected cancer cell lines with doxorubicin, paclitaxel, and topotecan, but not with sorafenib. TAI-95 shows excellent potency in a Huh-7 xenograft mouse model when administered orally. Gene expression analysis of clinical samples demonstrated increased expression of Hec1/NDC80 and associated genes (Nek2, SMC1A, and SMC2) in 27 % of patients, highlighting the potential for using this therapeutic approach to target patients with high Hec1 expression. Inhibition of Hec1 using small molecule approach may represent a promising novel approach for the treatment of primary liver cancers.

Từ khóa


Tài liệu tham khảo

Lin CP, Liu CR, Lee CN, Chan TS, Liu HE (2010) Targeting c-Myc as a novel approach for hepatocellular carcinoma. World J hepatol 2(1):16–20. doi:10.4254/wjh.v2.i1.16

Seinstra BA, Defreyne L, Lambert B, Lam MG, Verkooijen HM, van Erpecum KJ, van Hoek B, van Erkel AR, Coenraad MJ, Al Younis I, van Vlierberghe H, van den Bosch MA (2012) Transarterial RAdioembolization versus ChemoEmbolization for the treatment of hepatocellular carcinoma (TRACE): study protocol for a randomized controlled trial. Trials 13(1):144. doi:10.1186/1745-6215-13-144

Zhu AX, Blaszkowsky LS, Ryan DP, Clark JW, Muzikansky A, Horgan K, Sheehan S, Hale KE, Enzinger PC, Bhargava P, Stuart K (2006) Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J clin oncol off J Am Soc Clin Oncol 24(12):1898–1903. doi:10.1200/JCO.2005.04.9130

Sacco R, Bargellini I, Ginanni B, Bertini M, Faggioni L, Federici G, Romano A, Bertoni M, Metrangolo S, Altomare E, Parisi G, Tumino E, Scaramuzzino A, Bresci G, Bartolozzi C (2012) Long-term results of sorafenib in advanced-stage hepatocellular carcinoma: what can we learn from routine clinical practice? Expert Rev Anticancer Ther 12(7):869–875. doi:10.1586/era.12.58

Tanaka TU, Desai A (2008) Kinetochore-microtubule interactions: the means to the end. Curr Opin Cell Biol 20(1):53–63. doi:10.1016/j.ceb.2007.11.005

Ferretti C, Totta P, Fiore M, Mattiuzzo M, Schillaci T, Ricordy R, Di Leonardo A, Degrassi F (2010) Expression of the kinetochore protein Hec1 during the cell cycle in normal and cancer cells and its regulation by the pRb pathway. Cell Cycle 9(20):4174–4182

Chen Y, Riley DJ, Zheng L, Chen P-L, Lee W-H (2002) Phosphorylation of the mitotic regulator protein Hec1 by Nek2 kinase is essential for faithful chromosome segregation. J Biol Chem 277(51):49408–49416. doi:10.1074/jbc.M207069200

Wu G, Qiu XL, Zhou L, Zhu J, Chamberlin R, Lau J, Chen PL, Lee WH (2008) Small molecule targeting the Hec1/Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal. Cancer Res 68(20):8393–8399. doi:10.1158/0008-5472.CAN-08-1915

Diaz-Rodriguez E, Sotillo R, Schvartzman JM, Benezra R (2008) Hec1 overexpression hyperactivates the mitotic checkpoint and induces tumor formation in vivo. Proc Natl Acad Sci USA 105(43):16719–16724. doi:10.1073/pnas.0803504105

Qu Y, Li J, Cai Q, Liu B (2014) Hec1/Ndc80 is overexpressed in human gastric cancer and regulates cell growth. J Gastroenterol 49(3):408–418. doi:10.1007/s00535-013-0809-y

Puisieux A, Galvin K, Troalen F, Bressac B, Marcais C, Galun E, Ponchel F, Yakicier C, Ji J, Ozturk M (1993) Retinoblastoma and p53 tumor suppressor genes in human hepatoma cell lines. FASEB J Off Publ Fed Am Soc Exp Biol 7(14):1407–1413

Hu CM, Zhu J, Guo XE, Chen W, Qiu XL, Ngo B, Chien R, Wang YV, Tsai CY, Wu G, Kim Y, Lopez R, Chamberlin AR, Lee EH, Lee WH (2014) Novel small molecules disrupting Hec1/Nek2 interaction ablate tumor progression by triggering Nek2 degradation through a death-trap mechanism. Oncogene. doi:10.1038/onc.2014.67

Huang LY, Lee YS, Huang JJ, Chang CC, Chang JM, Chuang SH, Kao KJ, Tsai YJ, Tsai PY, Liu CW, Lin HS, Lau JY (2014) Characterization of the biological activity of a potent small molecule Hec1 inhibitor TAI-1. J Exp clin Cancer Res CR 33:6. doi:10.1186/1756-9966-33-6

Lee YS, Chuang SH, Huang LY, Lai CL, Lin YH, Yang JY, Liu CW, Yang SC, Lin HS, Chang CC, Lai JY, Jian PS, Lam K, Chang JM, Lau JY, Huang JJ (2014) Discovery of 4-Aryl-N-arylcarbonyl-2-aminothiazoles as Hec1/Nek2 Inhibitors. Part I: Optimization of in Vitro Potencies and Pharmacokinetic Properties. Journal of medicinal chemistry. doi:10.1021/jm401990s

Huang LY, Chang CC, Lee YS, Chang JM, Huang JJ, Chuang SH, Kao KJ, Lau GM, Tsai PY, Liu CW, Lin HS, Lau JY (2014) Activity of a novel Hec1-targeted anticancer compound against breast cancer cell lines in vitro and in vivo. Mol Cancer Ther. doi:10.1158/1535-7163.MCT-13-0700

Wei R, Ngo B, Wu G, Lee WH (2011) Phosphorylation of the Ndc80 complex protein, HEC1, by Nek2 kinase modulates chromosome alignment and signaling of the spindle assembly checkpoint. Mol Biol Cell 22(19):3584–3594. doi:10.1091/mbc.E11-01-0012

Zheng L, Chen Y, Lee WH (1999) Hec1p, an evolutionarily conserved coiled-coil protein, modulates chromosome segregation through interaction with SMC proteins. Mol Cell Biol 19(8):5417–5428

Hasumura S, Sujino H, Nagamori S, Kameda H (1988) Establishment and characterization of a human hepatocellular carcinoma cell line JHH-4. Hum Cell 1(1):98–100

Homma S, Nagamori S, Fujise K, Hasumura S, Sujino H, Matsuura T, Shimizu K, Niiya M, Kameda H (1990) Establishment and characterization of a human hepatocellular carcinoma cell line JHH-7 producing alpha -fetoprotein and carcinoembryonic antigen–changes in secretion of AFP and CEA from JHH-7 cells after heat treatment. Hum Cell 3(2):152–157

Ku JL, Park JG (2005) Biology of SNU cell lines. Cancer Res Treat Off J Korean Cancer Assoc 37(1):1–19. doi:10.4143/crt.2005.37.1.1

Park JG, Lee JH, Kang MS, Park KJ, Jeon YM, Lee HJ, Kwon HS, Park HS, Yeo KS, Lee KU et al (1995) Characterization of cell lines established from human hepatocellular carcinoma. Int J cancer J Int du Cancer 62(3):276–282

Chen Y, Riley DJ, Chen PL, Lee WH (1997) HEC, a novel nuclear protein rich in leucine heptad repeats specifically involved in mitosis. Mol Cell Biol 17(10):6049–6056

Staib F, Hussain SP, Hofseth LJ, Wang XW, Harris CC (2003) TP53 and liver carcinogenesis. Hum Mutat 21(3):201–216. doi:10.1002/humu.10176

Charette N, De Saeger C, Horsmans Y, Leclercq I, Starkel P (2013) Salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis through DR5 and survivin-dependent mechanisms. Cell Death Dis 4:e471. doi:10.1038/cddis.2012.200

Parekh P, Motiwale L, Naik N, Rao KV (2011) Downregulation of cyclin D1 is associated with decreased levels of p38 MAP kinases, Akt/PKB and Pak1 during chemopreventive effects of resveratrol in liver cancer cells. Exp Toxic Pathol Off J Gesellschaft fur Toxikologische Pathologie 63(1–2):167–173. doi:10.1016/j.etp.2009.11.005

Li G, Zhang S, Fang H, Yan B, Zhao Y, Feng L, Ma X, Ye X (2013) Aspirin overcomes Navitoclax-resistance in hepatocellular carcinoma cells through suppression of Mcl-1. Biochem Biophysi Res Commun 434(4):809–814. doi:10.1016/j.bbrc.2013.04.018

Sundin LJ, Guimaraes GJ, Deluca JG (2011) The NDC80 complex proteins Nuf2 and Hec1 make distinct contributions to kinetochore-microtubule attachment in mitosis. Mol Biol Cell 22(6):759–768. doi:10.1091/mbc.E10-08-0671

Thomas MB, O’Beirne JP, Furuse J, Chan AT, Abou-Alfa G, Johnson P (2008) Systemic therapy for hepatocellular carcinoma: cytotoxic chemotherapy, targeted therapy and immunotherapy. Ann Surg Oncol 15(4):1008–1014. doi:10.1245/s10434-007-9705-0

Chu JS, Ge FJ, Zhang B, Wang Y, Silvestris N, Liu LJ, Zhao CH, Lin L, Brunetti AE, Fu YL, Wang J, Paradiso A, Xu JM (2013) Expression and prognostic value of VEGFR-2, PDGFR-beta, and c-Met in advanced hepatocellular carcinoma. J Exp Clin Cancer Res CR 32(1):16. doi:10.1186/1756-9966-32-16

Seitz SJ, Schleithoff ES, Koch A, Schuster A, Teufel A, Staib F, Stremmel W, Melino G, Krammer PH, Schilling T, Muller M (2010) Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway. Int J cancer J Int du Cancer 126(9):2049–2066. doi:10.1002/ijc.24861

Chun E, Lee KY (2004) Bcl-2 and Bcl-xL are important for the induction of paclitaxel resistance in human hepatocellular carcinoma cells. Biochem Biophysi Res Commun 315(3):771–779. doi:10.1016/j.bbrc.2004.01.118

Takahashi M, Saito H, Atsukawa K, Ebinuma H, Okuyama T, Ishii H (2003) Bcl-2 prevents doxorubicin-induced apoptosis of human liver cancer cells. Hepatol Res Off J Japan Soc Hepatol 25(2):192–201

Chen KF, Chen HL, Tai WT, Feng WC, Hsu CH, Chen PJ, Cheng AL (2011) Activation of phosphatidylinositol 3-kinase/Akt signaling pathway mediates acquired resistance to sorafenib in hepatocellular carcinoma cells. J Pharmacol Exp Ther 337(1):155–161. doi:10.1124/jpet.110.175786

Siena S, Sartore-Bianchi A, Di Nicolantonio F, Balfour J, Bardelli A (2009) Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst 101(19):1308–1324. doi:10.1093/jnci/djp280