Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell

Scientific Reports - Tập 4 Số 1
Dong Young Chung1, Hyoung‐il Kim2, Young‐Hoon Chung3, M. J. Lee4, Sung Jong Yoo3, Alok D. Bokare2, Wonyong Choi2, Yung‐Eun Sung4
1Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 151-742, Republic of Korea
2School of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Republic of Korea
3Fuel Cell Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seoul 136-791, Republic of Korea
4School of Chemical and Biological Engineering, Seoul National University, Seoul 151-742, Republic of Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sung, Y. E., Chrzanowski, W., Zolfaghari, A., Jerkiewicz, G. & Wieckowski, A. Structure of chemisorbed sulfur on a Pt(111) electrode. J. Am. Chem. Soc. 119, 194–200 (1997).

Jung, N. et al. Methanol-tolerant cathode electrode structure composed of heterogeneous composites to overcome methanol crossover effects for direct methanol fuel cell. Int. J. Hydrogen Energy 36, 15731–15738 (2011).

Cheng, X. et al. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms and mitigation. J. Power Sources 165, 739–756 (2007).

Christoffersen, E., Liu, P., Ruban, A., Skriver, H. L. & Nørskov, J. K. Anode materials for low-temperature fuel cells: A density functional theory study. J. Catal. 199, 123–131 (2001).

Zhao, X. et al. Recent advances in catalysts for direct methanol fuel cells. Energ Environ Sci 4, 2736–2753 (2011).

Rossmeisl, J. et al. Bifunctional anode catalysts for direct methanol fuel cells. Energ Environ Sci 5, 8335–8342 (2012).

Park, K. W. et al. Chemical and electronic effects of Ni in Pt/Ni and Pt/Ru/Ni alloy nanoparticles in methanol electrooxidation. J. Phys. Chem. B 106, 1869–1877 (2002).

Park, K. W., Sung, Y. E., Han, S., Yun, Y. & Hyeon, T. Origin of the enhanced catalytic activity of carbon nanocoil-supported PtRu alloy electrocatalysts. J. Phys. Chem. B 108, 939–944 (2004).

Gasteiger, H. A., Markovic, N., Ross Jr, P. N. & Cairns, E. J. CO electrooxidation on well-characterized Pt-Ru alloys. J. Phys. Chem. 98, 617–625 (1994).

Gasteiger, H. A., Marković, N., Ross Jr, P. N. & Cairns, E. J. Methanol electrooxidation on well-characterized Pt-Ru alloys. J. Phys. Chem. 97, 12020–12029 (1993).

Iwasita, T., Hoster, H., John-Anacker, A., Lin, W. F. & Vielstich, W. Methanol oxidation on PtRu electrodes. Influence of surface structure and Pt-Ru atom distribution. Langmuir 16, 522–529 (2000).

Cuesta, A. At least three contiguous atoms are necessary for CO formation during methanol electrooxidation on platinum. J. Am. Chem. Soc. 128, 13332–13333 (2006).

Cuesta, A. Atomic ensemble effects in electrocatalysis: The site-knockout strategy. ChemPhysChem 12, 2375–2385 (2011).

Ji, X., Lee, K. T. & Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500–506 (2009).

Chung, W. J. et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 5, 518–524 (2013).

Zhang, S. S. Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems and solutions. J. Power Sources 231, 153–162 (2013).

Cho, K., Kwon, D. & Hoffmann, M. R. Electrochemical treatment of human waste coupled with molecular hydrogen production. RSC Advances 4, 4596–4608 (2014).

Cho, K. et al. Effects of anodic potential and chloride ion on overall reactivity in electrochemical reactors designed for solar-powered wastewater treatment. Environ. Sci. Technol. 48, 2377–2384 (2014).

Rai, D., Eary, L. E. & Zachara, J. M. Environmental chemistry of chromium. Sci. Total Environ. 86, 15–23 (1989).

Wang, W. X., Griscom, S. B. & Fisher, N. S. Bioavailability of Cr(III) and Cr(VI) to marine mussels from solute and particulate pathways. Environ. Sci. Technol. 31, 603–611 (1997).

Fendorf, S. E. & Li, G. Kinetics of chromate reduction by ferrous iron. Environ. Sci. Technol. 30, 1614–1617 (1996).

Park, Y. et al. Fullerol-titania charge-transfer-mediated photocatalysis working under visible light. Chem. Eur. J. 15, 10843–10850 (2009).

Kim, S., Yeo, J. & Choi, W. Simultaneous conversion of dye and hexavalent chromium in visible light-illuminated aqueous solution of polyoxometalate as an electron transfer catalyst. Appl Catal B-Environ. 84, 148–155 (2008).

Lovley, D. R. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47, 263–290 (1993).

Bokare, A. D. & Choi, W. Advanced oxidation process based on the Cr(III)/Cr(VI) redox cycle. Environ. Sci. Technol. 45, 9332–9338 (2011).

Kang, Y., Ye, X. & Murray, C. B. Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. Angew. Chem. Int. Ed. 49, 6156–6159 (2010).

Wu, J., Gross, A. & Yang, H. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett. 11, 798–802 (2011).

Kamarudin, S. K., Achmad, F. & Daud, W. R. W. Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. Int. J. Hydrogen Energy 34, 6902–6916 (2009).

Iwasita, T. Electrocatalysis of methanol oxidation. Electrochim. Acta 47, 3663–3674 (2002).

Wasmus, S. & Küver, A. Methanol oxidation and direct methanol fuel cells: A selective review. J. Electroanal. Chem. 461, 14–31 (1999).

Liu, H. et al. A review of anode catalysis in the direct methanol fuel cell. J. Power Sources 155, 95–110 (2006).

Heinzel, A. & Barragán, V. M. Review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J. Power Sources 84, 70–74 (1999).

Li, Q., He, R., Jensen, J. O. & Bjerrum, N. J. Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100°C. Chem. Mater. 15, 4896–4915 (2003).

Clesceri, L. S., Greenberg, A. E. & Eaton, A. D. Standard Methods for the Examination of Water and Wastewater 20th ed.(APHA American Public Health Association, 1998).

Bokare, A. D. & Choi, W. Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants. Environ. Sci. Technol. 44, 7232–7237 (2010).

Bard, A. J., Parsons, R. & Jordan, J. Standard Potentials in Aqueous Solution. p. 461 (Marcel Dekker, 1985).

Van Der Vliet, D. F. et al. Unique electrochemical adsorption properties of Pt-skin surfaces. Angew. Chem. Int. Ed. 51, 3139–3142 (2012).

Mayrhofer, K. J. J. et al. The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electrocatalysis. J. Phys. Chem. B 109, 14433–14440 (2005).

Chung, D. Y., Chung, Y. H., Jung, N., Choi, K. H. & Sung, Y. E. Correlation between platinum nanoparticle surface rearrangement induced by heat treatment and activity for an oxygen reduction reaction. PCCP 15, 13658–13663 (2013).