Inhibiting the PI3K signaling pathway: buparlisib as a new targeted option in breast carcinoma

Clinical and Translational Oncology - Tập 18 - Trang 541-549 - 2015
L. G. Estévez1, E. García2, M. Hidalgo3
1Breast Cancer Programme, Centro Integral Oncológico Clara Campal, Madrid, Spain
2Pathology Department, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
3Clinical Research Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain

Tóm tắt

Aberrations in the PI3K signaling pathway are frequently observed in patients with breast cancer. Because of that, PI3K inhibitors are attractive options for the treatment of breast cancer because PI3K is the most proximal component of the pathway other than receptor tyrosine kinases. Buparlisib is a potent and highly specific oral pan-class I PI3K inhibitor, which is currently under investigation in patients with breast cancer. In this article, we describe the PI3K signaling pathway, the prognostic value of PI3K pathway mutations, as well as the mechanism of action of buparlisib. Lastly, we discuss preliminary results of preclinical and clinical studies showing the efficacy and safety profile of this agent in breast cancer patients.

Tài liệu tham khảo

Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62. doi:10.1038/nrc2664. Cidado J, Park BH. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J Mammary Gland Biol Neoplasia. 2012;17(3–4):205–16. doi:10.1007/s10911-012-9264-2. Escobedo JA, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT. cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell. 1991;65(1):75–82. doi:10.1016/0092-8674(91)90409-R. Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G, et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell. 1991;65(1):91–104. doi:10.1016/0092-8674(91)90411-Q. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A, et al. Cloning of PI3Kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell. 1991;65(1):83–90. doi:10.1016/0092-8674(91)90410-Z. Myers MG Jr, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, et al. IRS-1 activates phosphatidylinositol 3′-kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci USA. 1992;89(21):10350–4. Guillermet-Guibert J, Bjorklof K, Salpekar A, Gonella C, Ramadani F, Bilancio A, et al. The p110beta isoform of phosphoinositide 3-kinase signals downstream of G protein-coupled receptors and is functionally redundant with p110gamma. Proc Natl Acad Sci USA. 2008;105(24):8292–7. doi:10.1073/pnas.0707761105. Stoyanov B, Volinia S, Hanck T, Rubio I, Loubtchenkov M, Malek D, et al. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. Science. 1995;269(5224):690–3. Maehama T, Dixon JE. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem. 1998;273(22):13375–8. Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 1995;376(6541):599–602. doi:10.1038/376599a0. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996;15(23):6541–51. Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R, et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol. 1999;9(8):393–404. doi:10.1016/S0960-9822(99)80186-9. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005;307(5712):1098–101. doi:10.1126/science.1106148. Toker A, Newton AC. Akt/protein kinase B is regulated by autophosphorylation at the hypothetical PDK-2 site. J Biol Chem. 2000;275(12):8271–4. Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: a new generation of mTOR inhibitors. Nat Rev Drug Discov. 2011;10(11):868–80. doi:10.1038/nrd3531. Castro AF, Rebhun JF, Clark GJ, Quilliam LA. Rheb binds tuberous sclerosis complex 2 (TSC2) and promotes S6 kinase activation in a rapamycin- and farnesylation-dependent manner. J Biol Chem. 2003;278(35):32493–6. doi:10.1074/jbc.C300226200C300226200. Inoki K, Li Y, Zhu T, Wu J, Guan KL. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol. 2002;4(9):648–57. doi:10.1038/ncb839ncb839. Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N. Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J. 1996;15(3):658–64. Chung J, Kuo CJ, Crabtree GR, Blenis J. Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell. 1992;69(7):1227–36. doi:10.1016/0092-8674(92)90643-Q. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, Rebholz H, et al. The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol. 2004;166(2):213–23. doi:10.1083/jcb.200403069jcb.200403069. Saura C, Bendell J, Jerusalem G, Grana-Suarez B, Su S, Ru Q et al. PD09-03: Phase I/II Study of BKM120 in Combination with Trastuzumab in Patients with HER2 Overexpressing Metastatic Breast Cancer Resistant to Trastuzumab-Containing Therapy. Cancer Res. 2011;71(suppl 24):Abstract PD09-03. doi:10.1158/0008-5472.sabcs11-pd09-03. Yuan TL, Cantley LC. PI3K pathway alterations in cancer: variations on a theme. Oncogene. 2008;27(41):5497–510. doi:10.1038/onc.2008.245. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304(5670):554. doi:10.1126/science.10965021096502. Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, Shen H, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73. doi:10.1038/nature12113. Bachman KE, Argani P, Samuels Y, Silliman N, Ptak J, Szabo S, et al. The PIK3CA gene is mutated with high frequency in human breast cancers. Cancer Biol Ther. 2004;3(8):772–5. Isakoff SJ, Engelman JA, Irie HY, Luo J, Brachmann SM, Pearline RV, et al. Breast cancer-associated PIK3CA mutations are oncogenic in mammary epithelial cells. Cancer Res. 2005;65(23):10992–1000. doi:10.1158/0008-5472.CAN-05-2612. Kalinsky K, Jacks LM, Heguy A, Patil S, Drobnjak M, Bhanot UK, et al. PIK3CA mutation associates with improved outcome in breast cancer. Clin Cancer Res. 2009;15(16):5049–59. doi:10.1158/1078-0432.CCR-09-0632. Gonzalez-Angulo AM, Ferrer-Lozano J, Stemke-Hale K, Sahin A, Liu S, Barrera JA, et al. PI3K pathway mutations and PTEN levels in primary and metastatic breast cancer. Mol Cancer Ther. 2011;10(6):1093–101. doi:10.1158/1535-7163.MCT-10-1089. Dupont Jensen J, Laenkholm AV, Knoop A, Ewertz M, Bandaru R, Liu W, et al. PIK3CA mutations may be discordant between primary and corresponding metastatic disease in breast cancer. Clin Cancer Res. 2011;17(4):667–77. doi:10.1158/1078-0432.CCR-10-1133. Boyault S, Drouet Y, Navarro C, Bachelot T, Lasset C, Treilleux I, et al. Mutational characterization of individual breast tumors: tP53 and PI3K pathway genes are frequently and distinctively mutated in different subtypes. Breast Cancer Res Treat. 2012;132(1):29–39. doi:10.1007/s10549-011-1518-y. Miller TW, Balko JM, Arteaga CL. Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer. J Clin Oncol. 2011;29(33):4452–61. doi:10.1200/JCO.2010.34.4879. De Laurentiis M, Arpino G, Massarelli E, Ruggiero A, Carlomagno C, Ciardiello F, et al. A meta-analysis on the interaction between HER-2 expression and response to endocrine treatment in advanced breast cancer. Clin Cancer Res. 2005;11(13):4741–8. doi:10.1158/1078-0432.CCR-04-2569. Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H. Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor alpha: a new model for anti-estrogen resistance. J Biol Chem. 2001;276(13):9817–24. doi:10.1074/jbc.M010840200M010840200. Yamnik RL, Digilova A, Davis DC, Brodt ZN, Murphy CJ, Holz MK. S6 kinase 1 regulates estrogen receptor alpha in control of breast cancer cell proliferation. J Biol Chem. 2009;284(10):6361–9. doi:10.1074/jbc.M807532200. DeNardo DG, Cuba VL, Kim H, Wu K, Lee AV, Brown PH. Estrogen receptor DNA binding is not required for estrogen-induced breast cell growth. Mol Cell Endocrinol. 2007;277(1–2):13–25. doi:10.1016/j.mce.2007.07.006. Sanchez CG, Ma CX, Crowder RJ, Guintoli T, Phommaly C, Gao F, et al. Preclinical modeling of combined phosphatidylinositol-3-kinase inhibition with endocrine therapy for estrogen receptor-positive breast cancer. Breast Cancer Res. 2011;13(2):R21. doi:10.1186/bcr2833. Voliva CF, Pecchi S, Burger M, Nagel T, Schnell C, Fritsch C et al. Biological characterization of NVP-BKM120, a novel inhibitor of phosphoinosotide 3-kinase in Phase I/II clinical trials. In: Proc AACR Annual Meeting, Washington, DC. Philadelphia (PA), EEUU, 2010. Maira SM, Pecchi S, Huang A, Burger M, Knapp M, Sterker D, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012;11(2):317–28. doi:10.1158/1535-7163.MCT-11-0474. Schnell CR, Stauffer F, Allegrini PR, O’Reilly T, McSheehy PM, Dartois C, et al. Effects of the dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor NVP-BEZ235 on the tumor vasculature: implications for clinical imaging. Cancer Res. 2008;68(16):6598–607. doi:10.1158/0008-5472.CAN-08-1044. Graupera M, Guillermet-Guibert J, Foukas LC, Phng LK, Cain RJ, Salpekar A, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature. 2008;453(7195):662–6. doi:10.1038/nature06892. Yuan TL, Choi HS, Matsui A, Benes C, Lifshits E, Luo J, et al. Class 1A PI3K regulates vessel integrity during development and tumorigenesis. Proc Natl Acad Sci USA. 2008;105(28):9739–44. doi:10.1073/pnas.0804123105. Brachmann SM, Kleylein-Sohn J, Gaulis S, Kauffmann A, Blommers MJ, Kazic-Legueux M, et al. Characterization of the mechanism of action of the pan class I PI3K inhibitor NVP-BKM120 across a broad range of concentrations. Mol Cancer Ther. 2012;11(8):1747–57. doi:10.1158/1535-7163.MCT-11-1021. Schneider BP, Winer EP, Foulkes WD, Garber J, Perou CM, Richardson A, et al. Triple-negative breast cancer: risk factors to potential targets. Clin Cancer Res. 2008;14(24):8010–8. doi:10.1158/1078-0432.CCR-08-1208. Ibrahim YH, Garcia-Garcia C, Serra V, He L, Torres-Lockhart K, Prat A, et al. PI3K inhibition impairs BRCA1/2 expression and sensitizes BRCA-proficient triple-negative breast cancer to PARP inhibition. Cancer Discov. 2012;2(11):1036–47. doi:10.1158/2159-8290.CD-11-0348. Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2012;2(11):1048–63. doi:10.1158/2159-8290.CD-11-0336. Rexer BN, Chanthaphaychith S, Dahlman KB, Arteaga CL. Direct inhibition of PI3K in combination with dual HER2 inhibitors is required for optimal antitumor activity in HER2+ breast cancer cells. Breast Cancer Res. 2014;16(1):R9. doi:10.1186/bcr3601. Hanker AB, Pfefferle AD, Balko JM, Kuba MG, Young CD, Sanchez V, et al. Mutant PIK3CA accelerates HER2-driven transgenic mammary tumors and induces resistance to combinations of anti-HER2 therapies. Proc Natl Acad Sci USA. 2013;110(35):14372–7. doi:10.1073/pnas.1303204110. Bendell JC, Rodon J, Burris HA, de Jonge M, Verweij J, Birle D, et al. Phase I, dose-escalation study of BKM120, an oral pan-Class I PI3K inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2012;30(3):282–90. doi:10.1200/JCO.2011.36.1360. Baselga J, De Jonge MJ, Rodon J, Burris HA, Birle DC, De Buck SS et al. A first-in-human phase I study of BKM120, an oral pan-class I PI3K inhibitor, in patients (pts) with advanced solid tumors. J Clin Oncol. 2010;28:15s (suppl; abstr 3003). Grana B, Burris HA, Rodon Ahnert J, Abdul Razak AR, De Jonge MJ, Eskens F et al. Oral PI3Kinase inhibitor BKM120 monotherapy in patients (pts) with advanced solid tumors: an update on safety and efficacy. J Clin Oncol. 2011;29 (suppl; abstr 3043). Ihle NT, Lemos R Jr, Wipf P, Yacoub A, Mitchell C, Siwak D, et al. Mutations in the phosphatidylinositol-3-kinase pathway predict for antitumor activity of the inhibitor PX-866 whereas oncogenic Ras is a dominant predictor for resistance. Cancer Res. 2009;69(1):143–50. doi:10.1158/0008-5472.CAN-07-6656. Rodon J, Bendell JC, Abdul RAR, Homji N, Trandafir L, Quadt C et al. Safety profile and clinical activity of single-agent BKM120, a Pan-Class I PI3K inhibitor, for the treatment of patients with metastatic breast carcinoma. Cancer Res. 2011;71(suppl 24):Abstract P3-16-01. doi:10.1158/0008-5472.sabcs11-p3-16-01. Rodon J, Bendell J, Razak ARA, De Jonge M, Eskens F, Di Tomaso E et al. A phase I dose escalation and expansion trial of BKM120, an oral pan-PI3K inhibitor, in patients with advanced solid tumors: analysis of pharmacodynamic biomarker data. In: ESMO Meeting Abstracts, Vienna, Austria, 2012. vol 9. p. ix158 (Abstract 457P). doi:10.1093/annonc/mds395. Dirix L, Schuler M, Machiels J, Hess D, Awada A, Steeghs N et al. Phase IB dose-escalation study of BEZ235 or BKM120 in combination with paclitaxel (PTX) in patients with advanced solid tumors. In: ESMO Meeting Abstracts, Vienna, Austria, September 1 2012. vol 9. p. ix157 (Abstract 454P). doi:10.1093/annonc/mds395. Bedard PL, Tabernero J, Janku F, Wainberg ZA, Paz-Ares L, Vansteenkiste J, et al. Ph lb dose escalation study of oral pan-PI3K inhibitor buparlisib (BKM120) with oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with advanced solid tumours. Clin Cancer Res. 2014. doi:10.1158/1078-0432.ccr-14-1814. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–27. doi:10.1016/j.ccr.2004.06.022S1535610804002107. Barbareschi M, Cuorvo LV, Girlando S, Bragantini E, Eccher C, Leonardi E, et al. PI3KCA mutations and/or PTEN loss in Her2-positive breast carcinomas treated with trastuzumab are not related to resistance to anti-Her2 therapy. Virchows Arch. 2012;461(2):129–39. doi:10.1007/s00428-012-1267-2. Saura C, Bendell J, Jerusalem G, Su S, Ru Q, De Buck S, et al. Phase Ib study of Buparlisib plus Trastuzumab in patients with HER2-positive advanced or metastatic breast cancer that has progressed on Trastuzumab-based therapy. Clin Cancer Res. 2014;20(7):1935–45. doi:10.1158/1078-0432.CCR-13-1070. Pistilli B, Urruticoechea A, Chan S, Han HS, Jerusalem G, Kong A et al. Ph Ib/II study of BKM120 plus trastuzumab in patients with trastuzumab-resistant HER2+ advanced breast cancer. In: ESMO Meeting Abstracts, Vienna, Austria, 2012. vol 9. p. ix116 (Abstract 3180). Mayer IA, Abramson VG, Balko JM, Isakoff SJ, Kuba MG, Sanders M et al. SU2C phase Ib study of pan-PI3K inhibitor BKM120 with letrozole in ER+/HER2− metastatic breast cancer (MBC). In: ASCO meeting abstracts, May 30 2012. vol suppl 15. p. Abstract 510. Estevez L, Suarez A, Calvo I, Fernandez-Abad M, Perea S, Hidalgo M. Abstract P4-15-09: an exploratory analysis of inactivation of PI3K/AKT/mTOR signaling pathway using neoadjuvant BKM120 in PI3KCA mutated early breast cancer. Cancer Res. 2013;73(24 Supplement):P4-15-09. doi:10.1158/0008-5472.sabcs13-p4-15-09.