Inhibiting nuclear factor erythroid 2 related factor 2-mediated autophagy in bovine mammary epithelial cells induces oxidative stress in response to exogenous fatty acids
Tóm tắt
In early lactation, bovine mammary epithelial cells undergo serious metabolic challenges and oxidative stress both of which could be alleviated by activation of autophagy. Nuclear factor erythroid 2 related factor 2 (NFE2L2), a master regulator of cellular redox homeostasis, plays an important role in the regulation of autophagy and oxidative stress. Thus, the objective of this study was to investigate the role of NFE2L2-mediated autophagy on oxidative stress of bovine mammary epithelial cells in response to exogenous free fatty acids (FFA). Exogenous FFA induced linear and quadratic decreases in activities of glutathione peroxidase (GSH-Px), catalase (CAT), and superoxide dismutase (SOD), and increases in the contents of reactive oxygen species (ROS) and malondialdehyde (MDA). Protein abundance of LC3-phosphatidylethanolamine conjugate (LC3-II) and the number of autophagosomes and autolysosomes decreased in a dose-dependent manner, while protein abundance of p62 increased in cells challenged with FFA. Activation of autophagy via pre-treatment with Rap attenuated the FFA-induced ROS accumulation. Importantly, FFA inhibited protein abundance of NFE2L2 and the translocation of NFE2L2 into the nucleus. Knockdown of NFE2L2 by siRNA decreased protein abundance of LC3-II, while it increased protein abundance of p62. Furthermore, sulforaphane (SFN) pre-treatment attenuated the FFA-induced oxidative stress by activating NFE2L2-mediated autophagy. The data suggested that NFE2L2-mediated autophagy is an important antioxidant mechanism in bovine mammary epithelial cells experiencing increased FFA loads.
Tài liệu tham khảo
Rutherford AJ, Oikonomou G, Smith RF. The effect of subclinical ketosis on activity at estrus and reproductive performance in dairy cattle. J Dairy Sci. 2016;99(6):4808–15. https://doi.org/10.3168/jds.2015-10154.
Abuelo A, Hernandez J, Benedito JL, Castillo C. The importance of the oxidative status of dairy cattle in the periparturient period: revisiting antioxidant supplementation. J Anim Physiol Anim Nutr (Berl). 2015;99(6):1003–16. https://doi.org/10.1111/jpn.12273.
Song Y, Loor JJ, Li C, Liang Y, Li N, Shu X, et al. Enhanced mitochondrial dysfunction and oxidative stress in the mammary gland of cows with clinical ketosis. J Dairy Sci. 2021;104(6):6909–18. https://doi.org/10.3168/jds.2020-19964.
Sun X, Chang R, Tang Y, Luo S, Jiang C, Jia H, et al. Transcription factor EB (TFEB)-mediated autophagy protects bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. J Anim Sci Biotechnol. 2021;12(1):35. https://doi.org/10.1186/s40104-021-00561-7.
Li X, Li G, Du X, Sun X, Peng Z, Zhao C, et al. Increased autophagy mediates the adaptive mechanism of the mammary gland in dairy cows with hyperketonemia. J Dairy Sci. 2020;103(3):2545–55. https://doi.org/10.3168/jds.2019-16910.
Chen Y, Tang Y, Luo S, Jia H, Xu Q, Chang R, et al. Nuclear factor erythroid 2-related factor 2 protects bovine mammary epithelial cells against free fatty acid-induced mitochondrial dysfunction in vitro. J Dairy Sci. 2021;104(12):12830–44. https://doi.org/10.3168/jds.2021-20732.
Wang Q, Liang B, Shirwany NA, Zou MH. 2-deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. PLoS One. 2011;6(2):e17234. https://doi.org/10.1371/journal.pone.0017234.
Park EY, Park JB. High glucose-induced oxidative stress promotes autophagy through mitochondrial damage in rat notochordal cells. Int Orthop. 2013;37(12):2507–14. https://doi.org/10.1007/s00264-013-2037-8.
Keshavarz M, Solaymani-Mohammadi F, Miri SM, Ghaemi A. Oncolytic paramyxoviruses-induced autophagy; a prudent weapon for cancer therapy. J Biomed Sci. 2019;26(1):48. https://doi.org/10.1186/s12929-019-0542-9.
Ornatowski W, Lu Q, Yegambaram M, Garcia AE, Zemskov EA, Maltepe E, et al. Complex interplay between autophagy and oxidative stress in the development of pulmonary disease. Redox Biol. 2020;36:101679. https://doi.org/10.1016/j.redox.2020.101679.
Russell RC, Yuan HX, Guan KL. Autophagy regulation by nutrient signaling. Cell Res. 2014;24(1):42–57. https://doi.org/10.1038/cr.2013.166.
Prieto P, Rosales-Mendoza CE, Terron V, Toledano V, Cuadrado A, Lopez-Collazo E, et al. Activation of autophagy in macrophages by pro-resolving lipid mediators. Autophagy. 2015;11(10):1729–44. https://doi.org/10.1080/15548627.2015.1078958.
Pajares M, Jimenez-Moreno N, Garcia-Yague AJ, Escoll M, de Ceballos ML, Van Leuven F, et al. Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy. 2016;12(10):1902–16. https://doi.org/10.1080/15548627.2016.1208889.
Johansson I, Monsen VT, Pettersen K, Mildenberger J, Misund K, Kaarniranta K, et al. The marine n-3 PUFA DHA evokes cytoprotection against oxidative stress and protein misfolding by inducing autophagy and NFE2L2 in human retinal pigment epithelial cells. Autophagy. 2015;11(9):1636–51. https://doi.org/10.1080/15548627.2015.1061170.
Ma YF, Wu ZH, Gao M, Loor JJ. Nuclear factor erythroid 2-related factor 2 antioxidant response element pathways protect bovine mammary epithelial cells against H2O2-induced oxidative damage in vitro. J Dairy Sci. 2018;101(6):5329–44. https://doi.org/10.3168/jds.2017-14128.
Clementi ME, Lazzarino G, Sampaolese B, Brancato A, Tringali G. DHA protects PC12 cells against oxidative stress and apoptotic signals through the activation of the NFE2L2/HO-1 axis. Int J Mol Med. 2019;43(6):2523–31. https://doi.org/10.3892/ijmm.2019.4170.
Pajares M, Rojo AI, Arias E, Diaz-Carretero A, Cuervo AM, Cuadrado A. Transcription factor NFE2L2/NRF2 modulates chaperone-mediated autophagy through the regulation of LAMP2A. Autophagy. 2018;14(8):1310–22. https://doi.org/10.1080/15548627.2018.1474992.
Guo W, Liu J, Li W, Ma H, Gong Q, Kan X, et al. Niacin alleviates dairy cow mastitis by regulating the GPR109A/AMPK/NRF2 signaling pathway. Int J Mol Sci. 2020;21(9):3321. https://doi.org/10.3390/ijms21093321.
Kadegowda AK, Bionaz M, Piperova LS, Erdman RA, Loor JJ. Peroxisome proliferator-activated receptor-gamma activation and long-chain fatty acids alter lipogenic gene networks in bovine mammary epithelial cells to various extents. J Dairy Sci. 2009;92(9):4276–89. https://doi.org/10.3168/jds.2008-1932.
Du X, Zhu Y, Peng Z, Cui Y, Zhang Q, Shi Z, et al. High concentrations of fatty acids and beta-hydroxybutyrate impair the growth hormone-mediated hepatic JAK2-STAT5 pathway in clinically ketotic cows. J Dairy Sci. 2018;101(4):3476–87. https://doi.org/10.3168/jds.2017-13234.
Mohan N, Banik NL, Ray SK. Combination of N-(4-hydroxyphenyl) retinamide and apigenin suppressed starvation-induced autophagy and promoted apoptosis in malignant neuroblastoma cells. Neurosci Lett. 2011;502(1):24–9. https://doi.org/10.1016/j.neulet.2011.07.016.
Sirois I, Groleau J, Pallet N, Brassard N, Hamelin K, Londono I, et al. Caspase activation regulates the extracellular export of autophagic vacuoles. Autophagy. 2012;8(6):927–37. https://doi.org/10.4161/auto.19768.
Sun X, Wang Y, Loor JJ, Bucktrout R, Shu X, Jia H, et al. High expression of cell death-inducing DFFA-like effector a (CIDEA) promotes milk fat content in dairy cows with clinical ketosis. J Dairy Sci. 2019;102(2):1682–92. https://doi.org/10.3168/jds.2018-15439.
Sun X, Jia H, Xu Q, Zhao C, Xu C. Lycopene alleviates H2O2-induced oxidative stress, inflammation and apoptosis in bovine mammary epithelial cells via the NFE2L2 signaling pathway. Food Funct. 2019;10(10):6276–85. https://doi.org/10.1039/C9FO01922G.
Gross JJ, Schwarz FJ, Eder K, van Dorland HA, Bruckmaier RM. Liver fat content and lipid metabolism in dairy cows during early lactation and during a mid-lactation feed restriction. J Dairy Sci. 2013;96(8):5008–17. https://doi.org/10.3168/jds.2012-6245.
Sun X, Tang Y, Jiang C, Luo S, Jia H, Xu Q, et al. Oxidative stress, NF-kappaB signaling, NLRP3 inflammasome, and caspase apoptotic pathways are activated in mammary gland of ketotic Holstein cows. J Dairy Sci. 2021;104(1):849–61. https://doi.org/10.3168/jds.2020-18788.
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12. https://doi.org/10.1002/path.2697.
Li L, Tan J, Miao Y, Lei P, Zhang Q. ROS and autophagy: interactions and molecular regulatory mechanisms. Cell Mol Neurobiol. 2015;35(5):615–21. https://doi.org/10.1007/s10571-015-0166-x.
Tanida I, Ueno T, Kominami E. LC3 and autophagy. Methods Mol Biol. 2008;445:77–88. https://doi.org/10.1007/978-1-59745-157-4_4.
Runwal G, Stamatakou E, Siddiqi FH, Puri C, Zhu Y, Rubinsztein DC. LC3-positive structures are prominent in autophagy-deficient cells. Sci Rep. 2019;9(1):10147. https://doi.org/10.1038/s41598-019-46657-z.
Aparicio R, Rana A, Walker DW. Upregulation of the autophagy adaptor p62/SQSTM1 prolongs health and lifespan in middle-aged drosophila. Cell Rep. 2019;28(4):1029–40 e5. https://doi.org/10.1016/j.celrep.2019.06.070.
Kim JH, Sim HA, Jung DY, Lim EY, Kim YT, Kim BJ, et al. Poria cocus wolf extract ameliorates hepatic steatosis through regulation of lipid metabolism, inhibition of ER stress, and activation of autophagy via AMPK activation. Int J Mol Sci. 2019;20(19):4801. https://doi.org/10.3390/ijms20194801.
Wu Y, Wang X, Guo H, Zhang B, Zhang XB, Shi ZJ, et al. Synthesis and screening of 3-MA derivatives for autophagy inhibitors. Autophagy. 2013;9(4):595–603. https://doi.org/10.4161/auto.23641.
Feng T, Yin Q, Weng ZL, Zhang JC, Wang KF, Yuan SY, et al. Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1beta in the rat spinal cord. J Huazhong Univ Sci Technolog Med Sci. 2014;34(6):830–7. https://doi.org/10.1007/s11596-014-1361-6.
Deng W, Li Y, Ren Z, He Q, Jia Y, Liu Y, et al. Thioredoxin-interacting protein: a critical link between autophagy disorders and pancreatic beta-cell dysfunction. Endocrine. 2020;70(3):526–37. https://doi.org/10.1007/s12020-020-02471-6.
Wu DM, Zheng ZH, Fan SH, Zhang ZF, Chen GQ, Lu J. Sulforaphane administration alleviates diffuse axonal injury (DAI) via regulation signaling pathway of NRF2 and HO-1. J Cell Biochem. 2020;121(1):430–42. https://doi.org/10.1002/jcb.29203.
Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal. 2018;29(17):1727–45. https://doi.org/10.1089/ars.2017.7342.
Jin M, Feng H, Wang Y, Yan S, Shen B, Li Z, et al. Gentiopicroside ameliorates oxidative stress and lipid accumulation through nuclear factor erythroid 2-related factor 2 activation. Oxidative Med Cell Longev. 2020;2020:2940746–13. https://doi.org/10.1155/2020/2940746.
Song Y, Li X, Li Y, Li N, Shi X, Ding H, et al. Non-esterified fatty acids activate the ROS-p38-p53/Nrf2 signaling pathway to induce bovine hepatocyte apoptosis in vitro. Apoptosis. 2014;19(6):984–97. https://doi.org/10.1007/s10495-014-0982-3.
Lu J, Gu L, Li Q, Wu N, Li H, Zhang X. Andrographolide emeliorates maltol aluminium-induced neurotoxicity via regulating p62-mediated Keap1-Nrf2 pathways in PC12 cells. Pharm Biol. 2021;59(1):232–41. https://doi.org/10.1080/13880209.2021.1883678.
Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179–91. https://doi.org/10.1101/gad.225680.113.
Xu Q, Fan Y, Loor JJ, Liang Y, Sun X, Jia H, et al. Adenosine 5′-monophosphate-activated protein kinase ameliorates bovine adipocyte oxidative stress by inducing antioxidant responses and autophagy. J Dairy Sci. 2021;104(4):4516–28. https://doi.org/10.3168/jds.2020-18728.
Tan WSD, Liao W, Peh HY, Vila M, Dong J, Shen HM, et al. Andrographolide simultaneously augments Nrf2 antioxidant defense and facilitates autophagic flux blockade in cigarette smoke-exposed human bronchial epithelial cells. Toxicol Appl Pharmacol. 2018;360:120–30. https://doi.org/10.1016/j.taap.2018.10.005.
Liu H, Smith AJ, Ball SS, Bao Y, Bowater RP, Wang N, et al. Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery. J Mol Med (Berl). 2017;95(5):553–64. https://doi.org/10.1007/s00109-016-1502-4.
Feng LX, Zhao F, Liu Q, Peng JC, Duan XJ, Yan P, et al. Role of Nrf2 in lipopolysaccharide-induced acute kidney injury: protection by human umbilical cord blood mononuclear cells. Oxidative Med Cell Longev. 2020;2020:6123459–20. https://doi.org/10.1155/2020/6123459.
Han J, Pan XY, Xu Y, Xiao Y, An Y, Tie L, et al. Curcumin induces autophagy to protect vascular endothelial cell survival from oxidative stress damage. Autophagy. 2012;8(5):812–25. https://doi.org/10.4161/auto.19471.