Infrared Continental Surface Emissivity Spectra and Skin Temperature Retrieved from IASI Observations over the Tropics

Journal of Applied Meteorology and Climatology - Tập 51 Số 6 - Trang 1164-1179 - 2012
V. Capelle1, A. Chédin1, Eric Péquignot2, Peter Schlüssel3, Stuart M. Newman4, N. A. Scott1
1Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, École Polytechnique, Palaiseau, France
2CNES Centre Spatial de Toulouse, Toulouse, France
3European Organization for the Exploitation of Meteorological Satellites, Darmstadt, Germany
4Met Office, Devon, Exeter, United Kingdom

Tóm tắt

Abstract

Land surface temperature and emissivity spectra are essential variables for improving models of the earth surface–atmosphere interaction or retrievals of atmospheric variables such as thermodynamic profiles, chemical composition, cloud and aerosol characteristics, and so on. In most cases, emissivity spectral variations are not correctly taken into account in climate models, leading to potentially significant errors in the estimation of surface energy fluxes and temperature. Satellite infrared observations offer the dual opportunity of accurately estimating these properties of land surfaces as well as allowing a global coverage in space and time. Here, high-spectral-resolution observations from the Infrared Atmospheric Sounder Interferometer (IASI) over the tropics (30°N–30°S), covering the period July 2007–March 2011, are interpreted in terms of 1° × 1° monthly mean surface skin temperature and emissivity spectra from 3.7 to 14 μm at a resolution of 0.05 μm. The standard deviation estimated for the surface temperature is about 1.3 K. For the surface emissivity, it varies from about 1%–1.5% for the 10.5–14- and 5.5–8-μm windows to about 4% around 4 μm. Results from comparisons with products such as Moderate Resolution Imaging Spectroradiometer (MODIS) low-resolution emissivity and surface temperature or ECMWF forecast data (temperature only) are presented and discussed. Comparisons with emissivity derived from the Airborne Research Interferometer Evaluation System (ARIES) radiances collected during an aircraft campaign over Oman and made at the scale of the IASI field of view offer valuable data for the validation of the IASI retrievals.

Từ khóa


Tài liệu tham khảo

Adler, 2003, The version 2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeor., 4, 1147, 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

Baldridge, 2009, The ASTER spectral library version 2.0, Remote Sens. Environ., 113, 711, 10.1016/j.rse.2008.11.007

Bosilovich, 2006, A comparison of MODIS land surface temperature with in situ observations, Geophys. Res. Lett., 33, L20112, 10.1029/2006GL027519

Chédin, 1985, The improved initialization inversion method: A high-resolution physical method for temperature retrievals from satellites of the TIROS-N series, J. Climate Appl. Meteor., 24, 128, 10.1175/1520-0450(1985)024<0128:TIIIMA>2.0.CO;2

Chédin, 2004, Simultaneous determination of continental surface emissivity and temperature from NOAA 10/HIRS observations: Analysis of their seasonal variations, J. Geophys. Res., 109, D20110, 10.1029/2004JD004886

Chevallier, 1998, A neural network approach for a fast and accurate computation of a longwave radiative budget, J. Appl. Meteor., 37, 1385, 10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2

Crevoisier, 2003

DeFries, 1998, Global land cover classifications at 8km spatial resolution: The use of training data derived from Landsat imagery in decision tree classifiers, Int. J. Remote Sens., 19, 3141, 10.1080/014311698214235

French, 2008, Detecting land cover change at the Jornada Experimental Range, New Mexico, with ASTER emissivities, Remote Sens. Environ., 112, 1730, 10.1016/j.rse.2007.08.020

Gillespie, 1998, A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images, IEEE Trans. Geosci. Remote Sens., 36, 1113, 10.1109/36.700995

Hook, 1992, A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies, Remote Sens. Environ., 42, 123, 10.1016/0034-4257(92)90096-3

Huete, 2002, Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195, 10.1016/S0034-4257(02)00096-2

Hulley, 2009, Intercomparison of versions 4, 4.1 and 5 of the MODIS land surface temperature and emissivity products and validation with laboratory measurements of sand samples from the Namib Desert, Namibia, Remote Sens. Environ., 113, 1313, 10.1016/j.rse.2009.02.018

Hulley, 2008, ASTER Land Surface Emissivity Database of California and Nevada, Geophys. Res. Lett., 35, L13401, 10.1029/2008GL034507

Hulley, 2010, Investigating the effects of soil moisture on thermal infrared land surface temperature and emissivity using satellite retrievals and laboratory measurements, Remote Sens. Environ., 114, 1480, 10.1016/j.rse.2010.02.002

Jacquinet-Husson, 2011, The 2009 edition of the GEISA spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 112, 2395, 10.1016/j.jqsrt.2011.06.004

Jarlan, 2008, Assimilation of spot/vegetation NDVI data into a Sahelian vegetation dynamics model, Remote Sens. Environ., 112, 1381, 10.1016/j.rse.2007.02.041

Jiménez, 2010, Relations between geological characteristics and satellite-derived infrared and microwave emissivities over deserts in northern Africa and the Arabian Peninsula, J. Geophys. Res., 115, D20311, 10.1029/2010JD013959

Klose, 2010, Sahel dust zone and synoptic background, Geophys. Res. Lett., 37, L09802, 10.1029/2010GL042816

Li, 2007, Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances, Geophys. Res. Lett., 34, D01304, 10.1029/2007GL030543

Li, 2011, Land surface emissivity from high temporal resolution geostationary infrared imager radiances: Methodology and simulation studies, J. Geophys. Res., 116, D01304

Miura, 2000, Evaluation of sensor calibration uncertainties on vegetation indices for MODIS, IEEE Trans. Geosci. Remote Sens., 38, 1399, 10.1109/36.843034

Nerry, 1988, Emissivity signatures in the thermal IR band for remote sensing: Calibration procedure and method of measurement, Appl. Opt., 27, 10.1364/AO.27.000758

Newman, 2005, Temperature and salinity dependence of sea surface emissivity in the thermal infrared, Quart. J. Roy. Meteor. Soc., 131, 2539, 10.1256/qj.04.150

Njoku, 2003, Soil moisture retrieval from AMSR-E, IEEE Trans. Geosci. Remote Sens., 41, 215, 10.1109/TGRS.2002.808243

Ogawa, 2003, Estimation of land surface window (8–12 μm) emissivity from multi-spectral thermal infrared remote sensing—A case study in a part of Sahara Desert, Geophys. Res. Lett., 30, 1067, 10.1029/2002GL016354

Péquignot, 2008, Infrared continental surface emissivity spectra retrieved from AIRS hyperspectral sensor, J. Appl. Meteor. Climatol., 47, 1619, 10.1175/2007JAMC1773.1

Pinker, 2007, Diurnal cycle of land surface temperature in a desert encroachment zone as observed from satellites, Geophys. Res. Lett., 34, L11809, 10.1029/2007GL030186

Plokhenko, 2000, The effects of surface reflection on estimating the vertical temperature–humidity distribution from spectral infrared measurements, J. Appl. Meteor., 39, 3, 10.1175/1520-0450(2000)039<0003:TEOSRO>2.0.CO;2

Prabhakara, 1976, Remote sensing of surface emissivity at 9 μm over the globe, J. Geophys. Res., 81, 3719, 10.1029/JC081i021p03719

Salisbury, 1992, Emissivity of terrestrial materials in the 8–14 μm atmospheric window, Remote Sens. Environ., 42, 83, 10.1016/0034-4257(92)90092-X

Salisbury, 1994, Thermal-infrared remote sensing and Kirchhoff’s law 1. Laboratory measurements, J. Geophys. Res., 99, 11 897, 10.1029/93JB03600

Schepanski, 2007, A new Saharan dust source activation frequency map derived from MSG–SEVIRI IR-channels, Geophys. Res. Lett., 34, L18803, 10.1029/2007GL030168

Scott, 1981, A fast line-by-line method for atmospheric absorption computations: The automatized atmospheric absorption atlas, J. Appl. Meteor., 20, 802, 10.1175/1520-0450(1981)020<0802:AFLBLM>2.0.CO;2

Scott, 1999, Characteristics of the TOVS Pathfinder Path-B dataset, Bull. Amer. Meteor. Soc., 80, 2679, 10.1175/1520-0477(1999)080<2679:COTTPP>2.0.CO;2

Seemann, 2008, Development of a global infrared land surface emissivity database for application to clear sky sounding retrievals from multispectral satellite radiance measurements, J. Appl. Meteor. Climatol., 47, 108, 10.1175/2007JAMC1590.1

Stubenrauch, 1999, Clouds as seen by satellite sounders (3I) and imagers (ISCCP). Part I: Evaluation of cloud parameters, J. Climate, 12, 2189, 10.1175/1520-0442(1999)012<2189:CASBSS>2.0.CO;2

Susskind, 2008, Improved surface parameter retrievals using AIRS/AMSU data, 10.1117/12.774759

Thelen, 2009, Hyperspectral retrieval of land surface emissivities using ARIES, Quart. J., Roy. Meteor. Soc., 135, 2110, 10.1002/qj.520

Vaughan, 2003, SEBASS hyperspectral thermal infrared data: Surface emissivity measurement and mineral mapping, Remote Sens. Environ., 85, 48, 10.1016/S0034-4257(02)00186-4

Wahiche, 1986, Cloud detection and cloud parameters retrievals from the satellites of the TIROS-N series, Ann. Geophys., 43, 207

Wan, 2003

Wan, 2008, New refinements and validation of the MODIS land-surface temperature/emissivity products, Remote Sens. Environ., 112, 59, 10.1016/j.rse.2006.06.026

Wan, 1997, A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data, IEEE Trans. Geosci. Remote Sens., 35, 980, 10.1109/36.602541

Wan, 1994, Spectral emissivity measurements of land-surface materials and related radiative transfer simulations, Adv. Space Res., 14, 91, 10.1016/0273-1177(94)90197-X

Wan, 2004, Quality assessment and validation of the MODIS global land surface temperature, Int. J. Remote Sens., 25, 261, 10.1080/0143116031000116417

Wilson, 1999, The development of an airborne infrared interferometer for meteorological sounding studies, J. Atmos. Oceanic Technol., 16, 1912, 10.1175/1520-0426(1999)016<1912:TDOAAI>2.0.CO;2

Zhang, 2007, Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface, J. Geophys. Res., 112, D01102

Zhou, 2011, Global land surface emissivity retrieval from satellite ultraspectral IR measurements, IEEE Trans. Geosci. Remote Sens., 49, 1277, 10.1109/TGRS.2010.2051036

Zhou, 2003, A sensitivity study of climate and energy balance simulations with use of satellite-derived emissivity data over northern Africa and the Arabian Peninsula, J. Geophys. Res., 108, 4795, 10.1029/2003JD004083