Truyền tải thông tin trong giao tiếp vi sinh vật và nấm: từ cổ điển đến lượng tử

Journal of Cell Communication and Signaling - Tập 12 - Trang 491-502 - 2018
Sarangam Majumdar1, Sukla Pal2
1Dipartimento di Ingegneria Scienze Informatiche e Matematica, Università degli Studi di L’ Aquila, L’Aquila, Italy
2Theoretical Physics Division, Physical Research Laboratory, Ahmedabad, India

Tóm tắt

Vi sinh vật có các hệ thống giao tiếp riêng. Việc tiết ra và tiếp nhận các phân tử tín hiệu hóa học và cơ chế tín hiệu điện qua các kênh ion là hai cách đặc biệt để truyền tải thông tin trong cộng đồng vi sinh vật. Trong bài báo này, chúng tôi đề cập đến các khía cạnh của các cơ chế quan trọng khác nhau tạo thành nền tảng của quá trình giao tiếp giữa các tế bào vi sinh vật, chẳng hạn như cơ chế cảm nhận nhóm (ở vi khuẩn và nấm), sự hình thành biofilm được điều chỉnh bởi cảm nhận nhóm, biểu hiện gen, độc lực, di cư, giảm cảm nhận nhóm, vai trò của tiếng ồn trong cảm nhận nhóm, các mô hình toán học (mô hình liệu pháp, mô hình tiến hóa, mô hình cơ chế phân tử và nhiều hơn nữa), giao tiếp vi khuẩn tổng hợp, các kênh ion của vi khuẩn, dây nano vi khuẩn và giao tiếp điện. Đặc biệt, chúng tôi nhấn mạnh hành vi tập thể của vi khuẩn bằng các phương pháp cổ điển và cơ học lượng tử (bao gồm cả thông tin lượng tử). Hơn nữa, chúng tôi chiếu sáng một góc nhìn mới để giới thiệu khái niệm sinh học tổng hợp lượng tử và bài kiểm tra Turing lượng tử tế bào có thể.

Từ khóa

#vi sinh vật #giao tiếp vi sinh vật #cảm nhận nhóm #biofilm #mô hình toán học #sinh học tổng hợp lượng tử #kiểm tra Turing lượng tử

Tài liệu tham khảo

Albuquerque P, Casadevall A (2012) Quorum sensing in fungi – a review. Med Mycol 50(4):337–345. https://doi.org/10.3109/13693786.2011.652201 Anand R, Rai N, Thattai M (2013) Interactions among quorum sensing inhibitors. PLoS One 8(4):e62254 Anguige K, King JR, Ward JP (2005) Modelling antibiotic- and anti-quorum sensing treatment of a spatially-structured Pseudomonas aeruginosa population. J Math Biol 51(5):557–594. https://doi.org/10.1007/s00285-005-0316-8 Anguige K, King JR, Ward JP, Williams P (2004) Mathematical modelling of therapies targeted at bacterial quorum sensing. Math Biosci 192(1):39–83. https://doi.org/10.1016/j.mbs.2004.06.008 Balagaddé FK, Song H, Ozaki J, Collins CH, Barnet M, Arnold FH, Quake SR, You L (2008) A synthetic Escherichia coli predator–prey ecosystem. Mol Syst Biol 4(1):187 Barrios AFG, Achenie LE (2010) Escherichia coli autoinducer-2 uptake network does not display hysteretic behavior but AI-2 synthesis rate controls transient bifurcation. Biosystems 99(1):17–26 Barrios AFG, Covo V, Medina LM, Vives-Florez M, Achenie L (2009) Quorum quenching analysis in Pseudomonas aeruginosa and Escherichia coli: network topology and inhibition mechanism effect on the optimized inhibitor dose. Bioprocess Biosyst Eng 32(4):545–556 Bashor CJ, Horwitz AA, Peisajovich SG, Lim WA (2010) Rewiring cells: synthetic biology as a tool to interrogate the organizational principles of living systems. Annu Rev Biophys 39:515–537 Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134 Baym M, Lieberman TD, Kelsic ED, Chait R, Gross R, Yelin I, Kishony R (2016) Spatiotemporal microbial evolution on antibiotic landscapes. Science 353(6304):1147–1151 Beagle SD, Lockles SW (2015) Electical signaling goes bacterial. Nature 527 Beckmann BE, Knoester DB, Connelly BD, Waters CM, McKinley PK (2012) Evolution of resistance to quorum quenching in digital organisms. Art&Life 18(3):291–310 Berneche S, Roux B (2001) Energetics of ion conduction through the K+ channel. Nature 414(6859):73 Bernroider G, Roy S (2005) Quantum entanglement of K + ions, multiple channel states, and the role of noise in the brain. SPIE 5841:205–213 Brenner K, Karig DK, Weiss R, Arnold FH (2007) Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proc Natl Acad Sci 104(44):17300–17304 Bressloff PC (2016) Ultrasensitivity and noise amplification in a model of V. harveyi quorum sensing, Physical Review E. 93(6):062418 Brown SP (1999) Cooperation and conflict in host-manipulating parasites. Proc R Soc B 266:1899–1899. https://doi.org/10.1098/rspb.1999.0864 Brown SP, Johnstone RA (2001) Cooperation in the dark: signalling and collective action in quorum-sensing bacteria. Proc R Soc B 268:961–965. https://doi.org/10.1098/rspb.2001.1609 Cárcamo-Oyarce G, Lumjiaktase P, Kümmerli R, Eberl L (2015) Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms. Nat Commun 6:5945 Chen GQ, Cui C, Mayer ML, Gouaux E (1999) Functional characterization of a potassium-selective prokaryotic glutamate receptor. Nature 402(6763):817–821 Chen H, Fink GR (2006) Feedback control of morphogenesis in fungi by aromatic alcohols. Genes Dev 20(9):1150–1161 Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans.Proceedings of the. National academy of Sciences of the United States of America 101(14):5048–5052 Chen Y, Kim JK, Hirning AJ, Josić K, Bennett MR (2015) Emergent genetic oscillations in a synthetic microbial consortium. Science 349(6251):986–989 Chopp DL, Kirisits MJ, Moran B, Parsek MR (2002) A mathematical model of quorum sensing in a growing bacterial biofilm. J Ind Microbiol Biotechnol 29(6):339–346 Chopp DL, Kirisits MJ, Moran B, Parsek MR (2003) The dependence of quorum sensing on the depth of a growing biofilm. Bull Math Biol 65(6):1053–1079 Cox CD, Peterson GD, Allen MS, Lancaster JM, McCollum JM, Austin D, Yan L, Sayler GS, Simpson ML (2003) Analysis of noise in quorum sensing. OMICS A Journal of Integrative Biology 7(3):317–334 Czárán T, Hoekstra RF (2009) Microbial communication, cooperation and cheating: quorum sensing drives the evolution of cooperation in bacteria. PLoS One 4(8):e6655 Danino T, Mondragón-Palomino O, Tsimring L, Hasty J (2010) A synchronized quorum of genetic clocks. Nature 463(7279):326–330 Datla US, Mather WH, Chen S, Shoultz IW, Täuber UC, Jones CN, Butzin NC (2017) The spatiotemporal system dynamics of acquired resistance in an engineered microecology. Sci Rep 7(1):16071 Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361):295–298 Deutsch D (1985) Quantum theory, the Church–Turing principle and the universal quantum computer. Proceedings of the Royal Society A 400(1818):97–117. https://doi.org/10.1098/rspa.1985.0070 Dilanji GE, Langebrake JB, De Leenheer P, Hagen SJ (2012) Quorum activation at a distance: spatiotemporal patterns of gene regulation from diffusion of an autoinducer signal. J Am Chem Soc 134(12):5618–5626 Dockery JD, Keener JP (2001) A mathematical model for quorum sensing in Pseudomonas aeruginosa. Bull Math Biol 63(1):95–116 Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280(5360):69–77 Dutzler R, Campbell EB, Cadene M, Chait BT, MacKinnon R (2002) X-ray structure of a ClC chloride channel at 3.0 Å reveals the molecular basis of anion selectivity. Nature 415(6869):287–294 Eberl HJ, Parker DF, Van Loosdrecht M (2001) A new deterministic spatio-temporal continuum model for biofilm development. Computational and Mathematical Methods in Medicine 3(3):161–175 El-Naggar MY, Wanger G, Leung KM, Yuzvinsky TD, Southam G, Yang J, Lau WM, Nealson KH, Gorby YA (2010) Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1. Proc Natl Acad Sci 107(42):18127–18131 Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338 Emerenini BO, Hense BA, Kuttler C, Eberl HJ (2015) A mathematical model of quorum sensing induced biofilm detachment. PLoS One 10(7):e0132385 Emerenini BO, Sonner S, Eberl HJ (2017) Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects.Mathematical. Biosciences & Engineering 14(3):625–653 Endy D (2005) Foundations for engineering biology. Nature 438(7067):449–453 Fagerlind MG, Nilsson P, Harlén M, Karlsson S, Rice SA, Kjelleberg S (2005) Modeling the effect of acylated homoserine lactone antagonists in Pseudomonas aeruginosa. Biosystems 80(2):201–213 Fagerlind MG, Rice SA, Nilsson P, Harlén M, James S, Charlton T, Kjelleberg S (2003) The role of regulators in the expression of quorum-sensing signals in Pseudomonas aeruginosa. J Mol Microbiol Biotechnol 6(2):88–100 Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M, Müller J, Schmitt-Kopplin P, Hartmann A (2010) Dynamic regulation of n-acyl-homoserine lactone production and degradation in Pseudomonas putida ISOF. FEMS Microbiol Ecol 72:22–34. https://doi.org/10.1111/j.1574-6941.2009.00828.x Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575 Friman VP, Diggle SP, Buckling A (2013) Protist predation can favour cooperation within bacterial species. Biol Lett 9(5):20130548 Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacte- ria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275 Gahlmann A, Moerner WE (2014) Exploring bacterial cell biology with single-molecule tracking and super-resolution imaging. Nat Rev Microbiol 12(1):9–22 García-Aljaro C, Melado-Rovira S, Milton DL, Blanch AR (2012) Quorum-sensing regulates biofilm formation in Vibrio scophthalmi. BMC Microbiol 12(1):287 Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342 Goryachev AB, Toh DJ, Lee T (2006) Systems analysis of a quorum sensing network: design constraints imposed by the functional requirements, network topology and kinetic constants. Biosystems 83(2-3):178–187 Gray KM, Passador L, Iglewski BH, Greenberg EP (1994) Interchangeability and specificity of components from the quorum-sensing regulatory systems of Vibrio fischeri and Pseudomonas aeruginosa. J Bacteriol 176:3076–3080 Gustafsson E, Nilsson P, Karlsson S, Arvidson S (2004) Characterizing the dynamics of the quorum-sensing system in Staphylococcus aureus. J Mol Microbiol Biotechnol 8(4):232–242 Haseltine EL, Arnold FH (2008) Implications of rewiring bacterial quorum sensing. Appl Environ Microbiol 74(2):437–445 Hense BA, Schuster M (2015) Core principles of bacterial autoinducer systems. Microbiol Mol Biol Rev 79(1):153–169 Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117(4):500 Hornby JM, Jacobitz-Kizzier SM, McNeel DJ, Jensen EC, Treves DS, Nickerson KW (2004) Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. Appl Environ Microbiol 70(3):1356–1359 Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungusCandida albicans is mediated by farnesol. Appl Environ Microbiol 67(7):2982–2992 Humphries J, Xiong L, Liu J, Prindle A, Yuan F, Arjes HA, Tsimring L, Süel GM (2017) Species-independent attraction to biofilms through electrical signaling. Cell 168(1):200–209 Hunter GAM, Vasquez FG, Keener JP (2013) A mathematical model and quantitative comparison of the small RNA circuit in the Vibrio harveyi and Vibrio cholerae quorum sensing systems. Phys Biol 10: 046007. http://stacks.iop.org/1478-3975/10/i=4/a=046007 Iyer R, Iverson TM, Accardi A, Miller C (2002) A biological role for prokaryotic ClC chloride channels. Nature 419(6908):715–718 James S, Nilsson P, James G, Kjelleberg S, Fagerström T (2000) Luminescence control in the marine bacterium Vibrio fischeri: an analysis of the dynamics of lux regulation1. J Mol Biol 296(4):1127–1137 Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417(6888):515–522 Karafyllidis IG (2012) Quantum gate circuit model of signal integration in bacterial quorum sensing. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(2):571–579 Karlsson D, Karlsson S, Gustafsson E, Normark BH, Nilsson P (2007) Modeling the regulation of the competence-evoking quorum sensing network in Streptococcus pneumoniae. Biosystems 90(1):211–223 Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367 Koerber AJ, King JR, Williams P (2005) Deterministic and stochastic modelling of endosome escape by Staphylococcus aureus:“quorum” sensing by a single bacterium. J Math Biol 50(4):440–488 Kügler S, Sebghati TS, Eissenberg LG, Goldman WE (2000) Phenotypic variation and intracellular parasitism by Histoplasma capsulatum. Proc Natl Acad Sci 97(16):8794–8798 Lambert N, Chen YN, Cheng YC, Li CM, Chen GY, Nori F (2013) Quantum biology. Nat Phys 9(1):10–18 Lane N (2015) The unseen world: reflections on Leeuwenhoek (1677) Concerning little animals. Philosophical Transactions of the Royal Society B: Biological Sciences 370(1666): 20140344. 10.1098/rstb.2014.0344 Lee H, Chang YC, Nardone G, Kwon-Chung KJ (2007) TUP1 disruption in Cryptococcus neoformans uncovers a peptide-mediated density-dependent growth phenomenon that mimics quorum sensing. Mol Microbiol 64:591–601 Leewenhoeck A (1677) Observation, communicated to the publisher by Mr. Antony van Leewenhoeck, in a Dutch letter of the 9 Octob. 1676 here English'd: concerning little animals by him observed in rain-well-sea and snow water; as also in water wherein pepper had lain infused. Philos Trans 12:821–831. https://doi.org/10.1098/rstl.1677.0003 Lentini R, Yeh Martín N, Forlin M, Belmonte L, Fontana J, Cornella M, Martini L, Tamburini S, Bentley EW, Jousson O, Mansy SS (2017) Two-way chemical communication be- tween artificial and natural cells. ACS Central Science 3(2):117 Li J, Wang L, Hashimoto Y, Tsao CY, Wood TK, Valdes JJ, Zafiriou E, Bentley WE (2006) A stochastic model of Escherichia coli AI-2 quorum signal circuit reveals alternative synthesis pathways. Mol Syst Biol 2(1):67 Liu J, Arthur P, Jacqueline H, Marçal G-S, Munehiro A, Lee Dong-yeon D, San L, Jordi G-O, Süel GM (2015a) Metabolic co-dependence gives rise to collective oscillations within biofilms. Nature 523(7562):550–554 Liu J, Corral MR, Prindle A, Dong-yeon LD, Larkin J, Sagarra GM, Ojalvo GJ, Süel MG (2017) Coupling between distant biofilms and emergence of nutrient time-sharing. Science 356(6338):638–642 Liu Z, Lavis LD, Betzig E (2015b) Imaging live-cell dynamics and structure at the single-molecule level. Mol Cell 58(4):644–659 Majumdar S, Datta S, Roy S (2012) Mathematical modelling of quorum sensing and bioluminescence in bacteria. Int J Adv Appl Sci 1(3):139–146 Majumdar S, Mondal S (2016) Conversation game: talking bacteria. J Cell Commun Signal 10(4):331–335 Majumdar S, Pal S (2016) Quorum sensing: a quantum perspective. Journal of cell communication and signaling 10(3):173–175 Majumdar S, Pal S (2017a) Cross-species communication in bacterial world. Journal of cell communication and signaling 11(2):187–190 Majumdar S, Pal S (2017b) Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. Journal of cell communication and signaling 11(3):281–284 Majumdar S, Roy S (2017a) Relevance of quantum mechanics in bacterial communication. NeuroQuantology. Accepted Majumdar S, Roy S (2017b) Spatiotemporal patterns and chaos in non-equilibrium bacterial communication. 17th BIOMAT International Symposium on Mathematical and Computational Biology, Moscow Majumdar S, Roy S, Llinas R (2017) Bacterial conversations and pattern formation. bioRxiv. https://doi.org/10.1101/098053 Marguet P, Balagadde F, Tan C, You L (2007) Biology by design: reduction and synthesis of cellular components and behaviour. J R Soc Interface 4(15):607–623 Marketon MM, Glenn SA, Eberhard A, González JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185(1):325–331 Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199 Mukherjee S, Moustafa D, Smith CD, Goldberg JB, Bassler BL (2017) The RhlR quorum-sensing receptor controls Pseudomonas aeruginosa pathogenesis and biofilm development independently of its canonical homoserine lactone autoinducer. PLoS Pathog 13(7):e1006504 Nadell CD, Xavier JB, Levin SA, Foster KR (2008) The evolution of quorum sensing in bacterial biofilms. PLoS Biol 6(1):e14 Nandagopal N, Elowitz MB (2011) Synthetic biology: integrated gene circuits. Science 333(6047):1244–1248 National Institutes of Health (2007) Immunology of Biofilms (R01), grants.nih.gov/grants/guide/pa-files/PA-07-288.html Netotea S, Bertani I, Steindler L, Kerényi Á, Venturi V, Pongor S (2009) A simple model for the early events of quorum sensing in Pseudomonas aeruginosa: modeling bacterial swarming as the movement of an" activation zone". Biol Direct 4(1):6 Nilsson P, Olofsson A, Fagerlind M, Fagerström T, Rice S, Kjelleberg S, Steinberg P (2001) Kinetics of the AHL regulatory system in a model biofilm system: how many bacteria constitute a “quorum”? J Mol Biol 309(3):631–640 Noireaux V, Libchaber A (2004) A vesicle bioreactor as a step toward an artificial cell assembly. Proc Natl Acad Sci U S A 101(51):17669–17674 Noskov SY, Berneche S, Roux B (2004) Control of ion selectivity in potassium channels by electrostatic and dynamic properties of carbonyl ligands. Nature 431(7010):830–834 Pérez-Velázquez J, Gölgeli M, García-Contreras R (2016) Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol 78(8):1585–1639 Prindle A, Jintao L, Munehiro A, San L, Jordi G-O, Süel GM (2015) Ion channels enable electrical communication in bacterial communities. Nature 527(7576):59–63 Quan DN, Tsao CY, Wu HC, Bentley WE (2016) Quorum sensing desynchronization leads to bimodality and patterned behaviors. PLoS Comput Biol 12(4):e1004781 Quiñones B, Dulla G, Lindow SE (2005) Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol Plant-Microbe Interact 18(7):682–693 Reguera G, Nevin KP, Nicoll JS, Covalla SF, Woodard TL, Lovley DR (2006) Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl Environ Microbiol 72(11):7345–7348 Ren D, Navarro B, Xu H, Yue L, Shi Q, Clapham DE (2001) A prokaryotic voltage-gated sodium channel. Science 294(5550):2372–2375 Roca MG, Arlt J, Jeffree CE, Read ND (2005) Cell biology of conidial anastomosis tubes in Neurospora crassa. Eukaryot Cell 4(5):911–919 Roy S, Llinás R (2009) Relevance of quantum mechanics on some aspects of ion channel function. Comptes rendus biologies 332(6):517–522 Russo G, Slotine JJE (2010) Global convergence of quorum-sensing networks. Phys Rev E 82(4):041919 Salari V, Naeij H, Shafiee A (2017) Quantum Interference and Selectivity through Biological Ion Channels. Sci Rep 7:41625 Schopf JW (1994) Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. Proc Natl Acad Sci U S A 91(15):6735–6742 Schopf JW, Kitajima K, Spicuzza MJ, Kudryavtsev AB, Valley JW (2018) SIMS analyses of the oldest known assemblage of microfossils document their taxon-correlated carbon isotope compositions. Proc Natl Acad Sci U S A 115(1):53–58 Schrödinger E (1944) What is life? Cambridge University Press, Cambridge Scott SR, Hasty J (2016) Quorum sensing communication modules for microbial consortia. ACS Synth Biol 5(9):969–977 Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP (2008) Natural causes of programmed death of yeast Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1783(7):1350–1353 Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104 Shou W, Ram S, Vilar JM (2007) Synthetic cooperation in engineered yeast populations. Proc Natl Acad Sci 104(6):1877–1882 Simpson ML (2004) Rewiring the cell: synthetic biology moves towards higher functional complexity. Trends Biotechnol 22(11):555–557 Solano C, Echeverz M, Lasa I (2014) Biofilm dispersion and quorum sensing. Curr Opin Microbiol 18:96–104 Song H, Payne S, Gray M, You L (2009) Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nat Chem Biol 5(12):929–935 Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456(7221):516–519 Tabareau N, Slotine JJ, Pham QC, Breakspear M (2010) How synchronization protects from noise. PLoS Comput Biol 6(1):e1000637. https://doi.org/10.1371/journal.pcbi.1000637 Thompson JA, Oliveira RA, Djukovic A, Ubeda C, Xavier KB (2015) Manipulation of the quorum sensing signal AI-2 affects the antibiotic-treated gut microbiota. Cell Rep 10(11):1861–1871 Vaziri A, Plenio MB (2010) Quantum coherence in ion channels: resonances, transport and verification. New J Phys 12(8):085001 Viretta AU, Fussenegger M (2004) Modeling the quorum sensing regulatory network of human-pathogenic Pseudomonas aeruginosa. Biotechnol Prog 20:670–678. https://doi.org/10.1021/bp034323l Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188(5):706–718 Wang M, Schaefer AL, Dandekar AA, Greenberg EP (2015) Quorum sensing and policing of Pseudomonas aeruginosa social cheaters. Proc Natl Acad Sci 112(7):2187–2191 Ward J (2008) Mathematical modeling of quorum-sensing control in biofilms. In: Balaban N (ed) Control of biofilm infections by signal manipulation, vol. 2 of Springer Series on Biofilms. Springer, Berlin, pp 79–108 Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2003) Early development and quorum sensing in bacterial biofilms. J Math Biol 47(1):23–55 Ward JP, King JR, Koerber AJ, Croft JM, Sockett RE, Williams P (2004) Cell-signalling repression in bacterial quorum sensing. Mathematical Medicine and Biology 21(3):169–204 Ward JP, King JR, Koerber AJ, Williams P, Croft JM, Sockett RE (2001) Mathematical modelling of quorum sensing in bacteria. Mathematical Medicine and Biology 18(3):263–292 Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346 Weber M, Buceta J (2011) Noise regulation by quorum sensing in low mRNA copy number systems. BMC Syst Biol 5(1):11 Williams P, Winzer K, Chan WC, Camara M (2007) Look who’s talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond Ser B Biol Sci 362(1483):1119–1134 Wongsuk T, Pumeesat P, Luplertlop N (2016) Fungal quorum sensing molecules: role in fungal morphogenesis and pathogenicity. J Basic Microbiol 56(5):440–447 Yan J, Nadell CD, Stone HA, Wingreen NS, Bassler BL (2017) Extracellular-matrix-mediated osmotic pressure drives Vibrio cholerae biofilm expansion and cheater exclusion. Nat Commun 8(1):327 You L, Cox RS III, Weiss R, Arnold FH (2004) Programmed population control by cell–cell communication and regulated killing. Nature 428(6985):868–871 Zhao J, Wang Q (2017) Three-dimensional numerical simulations of biofilm dynamics with quorum sensing in a flow cell. Bull Math Biol 79(4):884–919