Information and Efficiency in the Nervous System—A Synthesis

PLoS Computational Biology - Tập 9 Số 7 - Trang e1003157
Biswa Sengupta1,2, Martin Stemmler3, Karl Friston2
1Centre for Neuroscience, Indian Institute of Science, Bangalore, India
2The Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom
3Bernstein Centre Munich, Institute of Neurobiology, Ludwig Maximilians Universität, München, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

WJ Sutherland, 2005, The best solution, Nature, 435, 569, 10.1038/435569a

Alexander RM (1996) Optima for animals. Princeton/Chichester: Princeton University Press.

JE Niven, 2008, Energy limitation as a selective pressure on the evolution of sensory systems, J Exp Biol, 211, 1792, 10.1242/jeb.017574

Feynman RP, Hey AJG, Allen RW (1996) Feynman lectures on computation. Reading (Massachusetts): Addison-Wesley.

R Landauer, 1961, Irreversibility and heat generation in the computing process, IBM Journal of Research and Development, 5, 183, 10.1147/rd.53.0183

R Landauer, 1996, Minimal energy requirements in communciation, Science, 272, 1914, 10.1126/science.272.5270.1914

Stemmler M, Sengupta B, Laughlin SB, Niven JE (2011) Energetically optimal action potentials. In: Shawe-Taylor J, Zemel RS, Bartlett P, Pereira F, Weinberger KQ, editors. Advances in neural information processing systems 24. pp. 1566–1574.

C Jarzynski, 1997, Nonequilibrium equality for free energy differences, Phys Rev Lett, 78, 2690, 10.1103/PhysRevLett.78.2690

WR Ashby, 1947, Principles of the self-organising dynamic system, J Gen Psychol, 37, 125, 10.1080/00221309.1947.9918144

Nicolis G, Prigogine I (1977) Self-organisation in non-equilibrium systems. New York: Wiley.

GD Birkhoff, 1932, Recent contributions to the ergodic theory, Proc Natl Acad Sci U S A, 18, 279, 10.1073/pnas.18.3.279

K Friston, 2012, Free energy, value, and attractors, Comput Math Methods Med, 2012, 937860, 10.1155/2012/937860

K Friston, 2009, The free-energy principle: a rough guide to the brain?, TICS, 13, 293

K Friston, 2010, The free-energy principle: a unified brain theory?, Nat Rev Neurosci, 11, 127, 10.1038/nrn2787

Feynman RP (1998) Statistical mechanics: a set of lectures. Boulder (Colorado): Westview Press.

Beal M (2003) Variational algorithms for approximate bayesian inference [PhD thesis]. London: University College London.

Hinton GE, Sejnowski TJ (1983) Analyzing cooperative computation. In: Proceedings of the 5th Annual Congress of the Cognitive Science Society; 1983; Rochester, New York, United States.

Hinton GE, Sejnowski TJ (1983) Optimal perceptual inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; 1983; Washington, D.C., United States. pp. 448–453.

Hofstadter DR (1984) The copycat project: an experiment in nondeterminism and creative analogies. Boston: MIT Artificial Intelligence Laboratory.

JJ Hopfield, 1982, Neural networks and physical systems with emergent collective computational abilities, Proc Natl Acad Sci U S A, 79, 2554, 10.1073/pnas.79.8.2554

K Friston, 2006, A free energy principle for the brain, J Physiol Paris, 100, 70, 10.1016/j.jphysparis.2006.10.001

K Friston, 2007, Variational free energy and the Laplace approximation, Neuroimage, 34, 220, 10.1016/j.neuroimage.2006.08.035

LM Harrison, 2007, Extra-classical receptive field effects measured in striate cortex with fMRI, Neuroimage, 34, 1199, 10.1016/j.neuroimage.2006.10.017

MI Garrido, 2007, Evoked brain responses are generated by feedback loops, Proc Natl Acad Sci U S A, 104, 20961, 10.1073/pnas.0706274105

S Zeki, 1988, The functional logic of cortical connections, Nature, 335, 311, 10.1038/335311a0

DJ Felleman, 1991, Distributed hierarchical processing in the primate cerebral cortex, Cereb Cortex, 1, 1, 10.1093/cercor/1.1.1

M Kawato, 1993, A forward-inverse optics model of reciprocal connections between visual cortical areas, Network, 4, 415, 10.1088/0954-898X_4_4_001

MV Srinivasan, 1982, Predictive coding: a fresh view of inhibition in the retina, Proc R Soc Lond B Biol Sci, 216, 427, 10.1098/rspb.1982.0085

D Mumford, 1992, On the computational architecture of the neocortex. II. The role of cortico-cortical loops, Biol Cybern, 66, 241, 10.1007/BF00198477

F Crick, 1998, Constraints on cortical and thalamic projections: the no-strong-loops hypothesis, Nature, 391, 245, 10.1038/34584

RP Rao, 1999, Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects, Nat Neurosci, 2, 79, 10.1038/4580

AJ Yu, 2005, Uncertainty, neuromodulation, and attention, Neuron, 46, 681, 10.1016/j.neuron.2005.04.026

K Friston, 2008, Hierarchical models in the brain, PLoS Comput Biol, 4, e1000211, 10.1371/journal.pcbi.1000211

LF Abbott, 1997, Synaptic depression and cortical gain control, Science, 275, 220, 10.1126/science.275.5297.221

L Prigogine, 1972, Thermodynamics of evolution, Physics Today, 25, 38, 10.1063/1.3071140

P Elias, 1955, Predictive coding-I, IRE Transactions on Information Theory, 1, 16, 10.1109/TIT.1955.1055126

P Elias, 1955, Predictive coding-II, IRE Transactions on Information Theory, 1, 24, 10.1109/TIT.1955.1055116

M Stemmler, 1999, How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate, Nat Neurosci, 2, 521, 10.1038/9173

AJ Bell, 1995, An information-maximization approach to blind separation and blind deconvolution, Neural Comput, 7, 1129, 10.1162/neco.1995.7.6.1129

K Friston, 2011, What is optimal about motor control?, Neuron, 72, 488, 10.1016/j.neuron.2011.10.018

Y Peleg, 2010, Mutual information via thermodynamics: three different approaches, Journal of Statistical Mechanics: Theory and Experiments, Jan, P01014

ET Jaynes, 1957, Information theory and statistical mechanics, Phys Rev, 106, 620, 10.1103/PhysRev.106.620

C Shannon, 1948, A mathematical theory of communication, Bell System Technical Journal, 27, 379, 10.1002/j.1538-7305.1948.tb01338.x

Jaynes ET (2003) Probability theory: the logic of science. Cambridge (United Kingdom): Cambridge University Press.

JJ Atick, 1992, Could information theory provide an ecological theory of sensory processing?, Network, 3, 213, 10.1088/0954-898X_3_2_009

HB Barlow, 1989, Finding minimum entropy codes, Neural Computation, 1, 412, 10.1162/neco.1989.1.3.412

HB Barlow, 1987, Human contrast discrimination and the threshold of cortical neurons, J Opt Soc Am A, 4, 2366, 10.1364/JOSAA.4.002366

Barlow HB (1959) Sensory mechanisms, the reduction of redundancy, and intelligence. National Physical Laboratory Symposium. Teddington (United Kingdom): H.M. Stationery Office.

S Laughlin, 1981, A simple coding procedure enhances a neuron's information capacity, Z Naturforsch C, 36, 910, 10.1515/znc-1981-9-1040

Johnson D (2002) Four top reasons mutual information does not quantify neural information processing. In: Proceedings of the Annual Computational Neuroscience Meeting; 2002; Chicago, Illinois, United States.

Papoulis A (1984) Probability, random variables, and stochastic processes. New York: McGraw-Hill.

J Benda, 2007, From response to stimulus: adaptive sampling in sensory physiology, Curr Opin Neurobiol, 17, 430, 10.1016/j.conb.2007.07.009

A Treves, 1995, The upward bias in measures of information derived from limited data samples, Neural Comput, 7, 399, 10.1162/neco.1995.7.2.399

L Paninski, 2005, Asymptotic theory of information-theoretic experimental design, Neural Comput, 17, 1480, 10.1162/0899766053723032

L Paninski, 2003, Estimation of entropy and mutual information, Neural Computation, 15, 1191, 10.1162/089976603321780272

A Ames, 2000, CNS energy metabolism as related to function, Brain Res Brain Res Rev, 34, 42, 10.1016/S0165-0173(00)00038-2

DF Rolfe, 1997, Cellular energy utilization and molecular origin of standard metabolic rate in mammals, Physiol Rev, 77, 731, 10.1152/physrev.1997.77.3.731

Clarke D, Sokoloff L (1999) Circulation and energy metabolism of the brain. In: Siegel GJ, Agranoff BW, Albers RW, Fisher SK, Uhler MD, editors. Basic neurochemistry: molecular, cellular and medical aspects. Philadelphia: Lippincott-Raven. pp. 637–669.

D Attwell, 2001, An energy budget for signaling in the grey matter of the brain, J Cereb Blood Flow Metab, 21, 1133, 10.1097/00004647-200110000-00001

JC Skou, 1989, The identification of the sodium-pump as the membrane-bound Na<sup>+</sup>/K<sup>+</sup>-ATPase: a commentary on ‘The Influence of Some Cations on an Adenosine Triphosphatase from Peripheral Nerves’, Biochim Biophys Acta, 1000, 435, 10.1016/S0006-3002(89)80038-1

JC Skou, 1957, The influence of some cations on an adenosine triphosphatase from peripheral nerves, Biochim Biophys Acta, 23, 394, 10.1016/0006-3002(57)90343-8

RL Post, 1972, Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase, J Biol Chem, 247, 6530, 10.1016/S0021-9258(19)44725-X

AK Sen, 1964, Stoichiometry and localization of adenosine triphosphate-dependent sodium and potassium transport in the erythrocyte, J Biol Chem, 239, 345, 10.1016/S0021-9258(18)51788-9

T Pangrsic, 2005, Light dependence of oxygen consumption by blowfly eyes recorded with a magnetic diver balance, J Comp Physiol A Neuroethol Sens Neural Behav Physiol, 191, 75, 10.1007/s00359-004-0571-y

JE Niven, 2007, Fly photoreceptors demonstrate energy-information trade-offs in neural coding, PLoS Biol, 5, e116, 10.1371/journal.pbio.0050116

SB Laughlin, 2001, Energy as a constraint on the coding and processing of sensory information, Curr Opin Neurobiol, 11, 475, 10.1016/S0959-4388(00)00237-3

SB Laughlin, 2003, Communication in neuronal networks, Science, 301, 1870, 10.1126/science.1089662

WB Levy, 1996, Energy efficient neural codes, Neural Comput, 8, 531, 10.1162/neco.1996.8.3.531

C von der Malsburg, 1977, How to label nerve cells so that they can interconnect in an ordered fashion, Proc Natl Acad Sci U S A, 74, 5176, 10.1073/pnas.74.11.5176

E Bullmore, 2012, The economy of brain network organization, Nat Rev Neurosci, 13, 336, 10.1038/nrn3214

E Bullmore, 2009, Complex brain networks: graph theoretical analysis of structural and functional systems, Nat Rev Neurosci, 10, 186, 10.1038/nrn2575

R Sarpeshkar, 1998, Analog versus digital: extrapolating from electronics to neurobiology, Neural Comp, 10, 1601, 10.1162/089976698300017052

Sarpeshkar R (2010) Ultra low power bioelectronics: fundamentals, biomedical applications, and bio-inspired systems. Cambridge (United Kingdom): Cambridge University Press.

SB Laughlin, 1998, The metabolic cost of neural information, Nat Neurosci, 1, 36, 10.1038/236

JE Niven, 2003, The contribution of Shaker K<sup>+</sup> channels to the information capacity of Drosophila photoreceptors, Nature, 421, 630, 10.1038/nature01384

JE Niven, 2003, Shaker K<sup>+</sup> channels are predicted to reduce the metabolic cost of neural information in Drosophila photoreceptors, Proc Biol Sci, 270 Suppl 1, S58, 10.1098/rsbl.2003.0010

D Attwell, 2005, Neuroenergetics and the kinetic design of excitatory synapses, Nat Rev Neurosci, 6, 841, 10.1038/nrn1784

BC Carter, 2009, Sodium entry during action potentials of mammalian neurons: incomplete inactivation and reduced metabolic efficiency in fast-spiking neurons, Neuron, 64, 898, 10.1016/j.neuron.2009.12.011

A Hasenstaub, 2010, Metabolic cost as a unifying principle governing neuronal biophysics, Proc Natl Acad Sci U S A, 107, 12329, 10.1073/pnas.0914886107

B Sengupta, 2010, Action potential energy efficiency varies among neuron types in vertebrates and invertebrates, PLoS Comput Biol, 6, e1000840, 10.1371/journal.pcbi.1000840

H Alle, 2009, Energy-efficient action potentials in hippocampal mossy fibers, Science, 325, 1405, 10.1126/science.1174331

P Lennie, 2003, The cost of cortical computation, Curr Biol, 13, 493, 10.1016/S0960-9822(03)00135-0

JC Nawroth, 2007, An energy budget for the olfactory glomerulus, J Neurosci, 27, 9790, 10.1523/JNEUROSCI.1415-07.2007

H Okawa, 2008, ATP consumption by mammalian rod photoreceptors in darkness and in light, Curr Biol, 18, 1917, 10.1016/j.cub.2008.10.029

C Howarth, 2010, The energy use associated with neural computation in the cerebellum, J Cereb Blood Flow Metab, 30, 403, 10.1038/jcbfm.2009.231

JJ Harris, 2012, The energetics of CNS white matter, J Neurosci, 32, 356, 10.1523/JNEUROSCI.3430-11.2012

F Attneave, 1954, Some informational aspects of visual perception, Psychol Rev, 61, 183, 10.1037/h0054663

DB Chklovskii, 2004, Maps in the brain: what can we learn from them?, Annu Rev Neurosci, 27, 369, 10.1146/annurev.neuro.27.070203.144226

Q Wen, 2008, A cost-benefit analysis of neuronal morphology, J Neurophysiol, 99, 2320, 10.1152/jn.00280.2007

Q Wen, 2009, Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors, Proc Natl Acad Sci U S A, 106, 12536, 10.1073/pnas.0901530106

BL Chen, 2006, Wiring optimization can relate neuronal structure and function, Proc Natl Acad Sci U S A, 103, 4723, 10.1073/pnas.0506806103

P Crotty, 2006, Metabolic energy cost of action potential velocity, J Neurophysiol, 96, 1237, 10.1152/jn.01204.2005

PA Ortega, 2012, Thermodynamics as a theory of decision-making with information processing costs, ArXiv, 1204.6481v1

PA Ortega, 2010, A minimum relative entropy principle for learning and acting, J Artif Int Res, 38, 475

S Still, 2012, Thermodynamics of prediction, Phys Rev Lett, 109, 120604, 10.1103/PhysRevLett.109.120604

GD Birkhoff, 1931, Proof of the ergodic theorem, Proc Natl Acad Sci U S A, 17, 656, 10.1073/pnas.17.2.656

R Linsker, 1990, Perceptual neural organization: some approaches based on network models and information theory, Annu Rev Neurosci, 13, 257, 10.1146/annurev.ne.13.030190.001353

ME Tipping, 2001, Sparse bayesian learning and the relevance vector machine, J Mach Learn Res, 1, 211

T Paus, 2008, Why do many psychiatric disorders emerge during adolescence?, Nat Rev Neurosci, 9, 947, 10.1038/nrn2513

GF Gilestro, 2009, Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila, Science, 324, 109, 10.1126/science.1166673

B Sengupta, 2013, The effect of cell size and channel density on neuronal information encoding and energy efficiency, J Cereb Blood Flow Metab

P Christie, 2000, The interpretation and application of Rent&apos;s rule, IEEE Journal of VLSI, 8, 639, 10.1109/92.902258

DS Bassett, 2010, Efficient physical embedding of topologically complex information processing networks in brains and computer circuits, PLoS Comput Biol, 6, e1000748, 10.1371/journal.pcbi.1000748

Sengupta B (2011) Information encoding and energy consumption in single neuron models [PhD thesis]. Cambridge (United Kingdom): University of Cambridge.