Influence of grain boundaries on the austenitic and martensitic phase transitions in iron
Tóm tắt
Using classical molecular dynamics simulations, we study the martensitic and austenitic phase transformation in an iron crystal containing a symmetric tilt grain boundary (GB). Without a GB, the system does not transform. The presence of a GB enables the transformation. The new phase nucleates at the GB. The austenitic transition temperature decreases approximately linearly with the GB energy. Here, the GB inherits its inherent periodicity to the microstructure of the forming austenite phase. The martensitic transformation proceeds via a two-step pathway resulting in a twinned microstructure.
Tài liệu tham khảo
D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn. (Chapman & Hall, London, 1992)
E. Pereloma, D.V. Edmonds, eds., in Phase Transformations in Steels, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques (Woodhead Publishing Limited, Cambridge, UK, 2012), Vol. 2
Z. Yang, R.A. Johnson, Model. Simul. Mater. Sci. Eng. 1, 707 (1993)
C. Bos, J. Sietsma, B.J. Thijsse, Phys. Rev. B 1, 104117 (2006)
H.M. Urbassek, L. Sandoval, in Phase Transformations in Steels, Diffusionless Transformations, High Strength Steels, Modelling and Advanced Analytical Techniques, edited by E. Pereloma, D.V. Edmonds (Woodhead Publishing Limited, Cambridge, UK, 2012), Vol. 2, pp. 433–463
R. Meyer, P. Entel, Phys. Rev. B 1, 5140 (1998)
B. Wang, H.M. Urbassek, Metall. Mater. Trans. A 1, 2471 (2016)
K. Verbeken, L. Barbé, D. Raabe, ISIJ Int. 1, 1601 (2009)
G.H. Zhang, T. Takeuchi, M. Enomoto, Y. Adachi, Metall. Trans. A 1, 1597 (2011)
H. Song, J.J. Hoyt, Model. Simul. Mater. Sci. Eng. 1, 085012 (2015)
J. Meiser, H.M. Urbassek, AIP Adv. 1, 085017 (2016)
G.V. Kurdjumov, G. Sachs, Z. Phys. 1, 325 (1930)
W. Pitsch, Philos. Mag. 1, 577 (1959)
D. Hull, D.J. Bacon, Introduction to Dislocations, 3rd edn. (Pergamon, Oxford, 1984)
M.W. Finnis, M. Rühle, in Structure of Solids, Materials Science and Technology, A Comprehensive Treatment, edited by V. Gerold (VCH, Weinheim, 1993), Vol. 1, Chap. 9, p. 533
S. Nose, J. Chem. Phys. 1, 511 (1984)
W.G. Hoover, Phys. Rev. A 1, 1695 (1985)
C. Engin, L. Sandoval, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 035005 (2008)
L. Sandoval, H.M. Urbassek, P. Entel, Phys. Rev. B 1, 214108 (2009)
B. Wang, H.M. Urbassek, Phys. Rev. B 1, 104108 (2013)
B. Wang, E. Sak-Saracino, N. Gunkelmann, H.M. Urbassek, Comput. Mater. Sci. 1, 399 (2014)
B. Wang, E. Sak-Saracino, L. Sandoval, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 045003 (2014)
E. Sak-Saracino, H.M. Urbassek, Eur. Phys. J. B 1, 169 (2015)
X. Ou, Mater. Sci. Technol. 1, 822 (2017)
S. Karewar, J. Sietsma, M.J. Santofimia, Acta Mater. 1, 71 (2018)
Y. Shibuta, S. Takamoto, T. Suzuki, ISIJ Int. 1, 1582 (2008)
A.P. Sutton, V. Vitek, Phil. Trans. R. Soc. Lond. A 1, 1 (1983)
D. Wolf, Philos. Mag. A 1, 447 (1990)
S. Plimpton, J. Comput. Phys. 1, 1 (1995)
J.D. Honeycutt, H.C. Andersen, J. Phys. Chem. 1, 4950 (1987)
D. Faken, H. Jonsson, Comput. Mater. Sci. 1, 279 (1994)
A. Stukowski, Model. Simul. Mater. Sci. Eng. 1, 015012 (2010)
L. Sandoval, H.M. Urbassek, P. Entel, New J. Phys. 1, 103027 (2009)
R. Freitas, M. Asta, M. de Koning, Comput. Mater. Sci. 1, 333 (2016)
B. Wang, H.M. Urbassek, Model. Simul. Mater. Sci. Eng. 1, 085007 (2013)
E. Sak-Saracino, H.M. Urbassek, Int. J. Comput. Mater. Sci. Eng. 1, 1650001 (2016)
Y.C. Wang, H. Ye, Philos. Mag. A 1, 261 (1996)
H.-K. Mao, W.A. Bassett, T. Takahashi, J. Appl. Phys. 1, 272 (1967)
F.M. Wang, R. Ingalls, Phys. Rev. B 1, 5647 (1998)
P. Entel, R. Meyer, K. Kadau, Philos. Mag. B 1, 183 (2000)
J.L. Dossett, H.E. Boyer, Practical Heat Treating, 2nd edn. (ASM International, Materials Park, OH, USA, 2006)