Influence of cellular models and individual factor in the biological response to chest CT scan exams
Tóm tắt
While computed tomography (CT) exams are the major cause of medical exposure to ionising radiation, there is increasing evidence that the potential radiation-induced risks must be documented. We investigated the impact of cellular models and individual factor on the deoxyribonucleic acid double-strand breaks (DSB) recognition and repair in human fibroblasts and mammary epithelial cells exposed to current chest CT scan conditions. Twelve human primary fibroblasts and four primary human mammary epithelial cell lines with different levels of radiosensitivity/susceptibility were exposed to a standard chest CT scan exam using adapted phantoms. Cells were exposed to a single helical irradiation (14.4 mGy) or to a topogram followed, after 1 min, by one single helical examination (1.1 mGy + 14.4 mGy). DSB signalling and repair was assessed through anti-γH2AX and anti-pATM immunofluorescence. Chest CT scan induced a significant number of γH2AX and pATM foci. The kinetics of both biomarkers were found strongly dependent on the individual factor. The topogram may also influence the biological response of radiosensitive/susceptible fibroblasts to irradiation. Altogether, our findings show that a chest CT scan exam may result in 2 to 3 times more unrepaired DSB in cells from radiosensitive/susceptible patients. Both individual and tissue factors in the recognition and repair of DSB after current CT scan exams are important. Further investigations are needed to better define the radiosensitivity/susceptibility of individual humans.
Tài liệu tham khảo
National Council on Radiation Protection and Measurements (2009) Ionizing radiation exposure of the population of the United States: recommendations of the National Council on Radiation Protection and Measurements. Bethesda, Md
Bethesda M National Council on Radiation Protection and Measurements (2019) Medical radiation exposure of patients in the united states. NCRP Report No. 184. https://ncrponline.org/shop/reports/report-no-184-medical-radiation-exposure-of-patients-in-the-united-states-2019/
Mathews JD, Forsythe AV, Brady Z, et al (2013) Cancer risk in 680 000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346:f2360–f2360. https://doi.org/10.1136/bmj.f2360
Pearce MS, Salotti JA, Little MP, et al (2012) Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet 380:499–505. https://doi.org/10.1016/S0140-6736(12)60815-0
Pijpe A, Andrieu N, Easton DF, et al (2012) Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ 345:e5660. https://doi.org/10.1136/bmj.e5660
Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4:665–676. https://doi.org/10.1038/nrc1431
Colin C, Foray N (2012) DNA damage induced by mammography in high family risk patients: only one single view in screening. Breast 21:409–410. https://doi.org/10.1016/j.breast.2011.12.003
Sakane H, Ishida M, Shi L, et al (2020) Biological effects of low-dose chest CT on chromosomal DNA. Radiology 295:439–445. https://doi.org/10.1148/radiol.2020190389
Shi L, Tashiro S (2018) Estimation of the effects of medical diagnostic radiation exposure based on DNA damage. J Radiat Res (Tokyo) 59:ii121–ii129. https://doi.org/10.1093/jrr/rry006
Foray N, Bourguignon M, Hamada N (2016) Individual response to ionizing radiation. Mutat Res Mutat Res 770:369–386. https://doi.org/10.1016/j.mrrev.2016.09.001
Granzotto A, Benadjaoud MA, Vogin G, et al (2016) Influence of nucleoshuttling of the ATM protein in the healthy tissues response to radiation therapy: toward a molecular classification of human radiosensitivity. Int J Radiat Oncol 94:450–460. https://doi.org/10.1016/j.ijrobp.2015.11.013
Bodgi L, Foray N (2016) The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: resolution of the linear-quadratic model. Int J Radiat Biol 92:117–131. https://doi.org/10.3109/09553002.2016.1135260
Berthel E, Foray N, Ferlazzo ML (2019) The nucleoshuttling of the ATM protein: a unified model to describe the Individual response to high- and low-dose of radiation? Cancers 11:905. https://doi.org/10.3390/cancers11070905
Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci 100:5057–5062. https://doi.org/10.1073/pnas.0830918100
Bakkenist CJ, Kastan MB (2003) DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506. https://doi.org/10.1038/nature01368
Burma S, Chen BP, Murphy M, Kurimasa A, Chen DJ (2001) ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467. https://doi.org/10.1074/jbc.C100466200
Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273:5858–5868. https://doi.org/10.1074/jbc.273.10.5858
Maalouf M, Granzotto A, Devic C, et al (2019) Influence of linear energy transfer on the nucleo-shuttling of the ATM protein: a novel biological interpretation relevant for particles and radiation. Int J Radiat Oncol 103:709–718. https://doi.org/10.1016/j.ijrobp.2018.10.011
El-Nachef L, Al-Choboq J, Restier-Verlet J et al (2021) Human radiosensitivity and radiosusceptibility: what are the differences? Int J Mol Sci 22:7158. https://doi.org/10.3390/ijms22137158
Gillet P, Munier M, Arbor N, Carbillet F, el Bitar Z (2018) Evaluation of an optical scintillating fiber detector for CT dosimetry. Radiat Meas 119:125–131. https://doi.org/10.1016/j.radmeas.2018.09.012
Jin L, Qu Y, Gomez LJ, et al (2018) Characterization of primary human mammary epithelial cells isolated and propagated by conditional reprogrammed cell culture. Oncotarget 9:11503–11514. https://doi.org/10.18632/oncotarget.23817
Munier M, Sohier T, Jung J, et al (2011) Method for determining the irradiation dose deposited in a scintillator by ionising radiation and associated device patents WO2013060745(A1), iUS9244178(B2)
Munier M, Carbillet F, Torche F, Sohier T (2016) Device for determining a deposited dose and associated method US10,838,077 (B2)
Foray N, Marot D, Gabriel A et al (2003) A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein. EMBO J 22:2860–2871. https://doi.org/10.1093/emboj/cdg274
Joubert A, Zimmerman KM, Bencokova Z, et al (2008) DNA double-strand break repair defects in syndromes associated with acute radiation response: at least two different assays to predict intrinsic radiosensitivity. Int J Radiat Biol 84:107–125. https://doi.org/10.1080/09553000701797039
Ferlazzo M, Berthel E, Granzotto A, et al (2020) Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated with a delayed radiation-induced ATM nuclear localization. Int J Radiat Biol 96:394–410. https://doi.org/10.1080/09553002.2020.1694189
Frank J, Massey J (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46:68–78. https://doi.org/10.2307/2280095
Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. https://doi.org/10.1214/aoms/1177730491
Wilcoxon F (1945) Individual comparisons by ranking methods. Biom Bull 1:80. https://doi.org/10.2307/3001968
Kruskal WH, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621. https://doi.org/10.1080/01621459.1952.10483441
Colin C, Devic C, Noël A, et al (2011) DNA double-strand breaks induced by mammographic screening procedures in human mammary epithelial cells. Int J Radiat Biol 87:1103–1112. https://doi.org/10.3109/09553002.2011.608410
Damilakis J (2021) CT Dosimetry: what has been achieved and what remains to be done. Invest Radiol 56:62–68. https://doi.org/10.1097/RLI.0000000000000727
Institute of Radiation Protection and Nuclear Safety (2013) Doses delivered to computed tomography patients. Analysis of dose reports from 9 radiology departments in France 2012. IRSN report. https://www.irsn.fr/FR/expertise/rapports_expertise/Documents/radioprotection/IRSN_NRD-Report-2016-2018_202009.pdf
Sulieman A, Tammam N, Alzimami K, Elnour AM, Babikir E, Alfuraih A (2015) Dose reduction in chest CT examination. Radiat Prot Dosimetry 165:185–189. https://doi.org/10.1093/rpd/ncv123
Institute for Radiation Protection and Nuclear Safety (2010) Doses delivered to patients in CT and conventional radiology. IRSN Report. https://www.irsn.fr/fr/expertise/rapports_expertise/documents/radioprotection/irsn-rapport-dosimetrie-patient-2010-12.pdf
Pawlik TM, Keyomarsi K (2004) Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 59:928–942. https://doi.org/10.1016/j.ijrobp.2004.03.005
Colin C, Granzotto A, Devic C, et al (2011) MRE11 and H2AX biomarkers in the response to low-dose exposure: balance between individual susceptibility to radiosensitivity and to genomic instability. Int J Low Radiat 8:96. https://doi.org/10.1504/IJLR.2011.044191
Colin C, Devic C, Nol A et al (2011) DNA double-strand breaks induced by mammographic screening procedures in human mammary epithelial cells. Int J Radiat Biol:87. https://doi.org/10.3109/09553002.2011.608410
Devic C, Ferlazzo ML, Foray N (2018) Influence of individual radiosensitivity on the adaptive response phenomenon: toward a mechanistic explanation based on the nucleo-shuttling of ATM Protein. Dose Response 16:155932581878983. https://doi.org/10.1177/1559325818789836
Devic C, Ferlazzo ML, Berthel E, Foray N (2020) Influence of individual radiosensitivity on the hormesis phenomenon: toward a mechanistic explanation based on the nucleoshuttling of ATM protein. Dose Response 18:155932582091378. https://doi.org/10.1177/1559325820913784