Influence of LED light spectra on in vitro somatic embryogenesis and LC–MS analysis of chlorogenic acid and rutin in Peucedanum japonicum Thunb.: a medicinal herb
Tóm tắt
Peucedanum japonicum Thunb, an important medicinal herb is reported to possess pharmacological properties such as anti-obesity, anti-oxidant, anti-inflammatory, anti-bacterial, anti-diabetic and anti-platelet aggregation. The present study aimed to develop an in vitro plant regeneration system of P. japonicum via somatic embryogenesis and to analyse chlorogenic acid and rutin contents in a few commercially available plant products of P. japonicum in Japan and Taiwan markets, and tissue culture plants derived from somatic embryos. Induction of somatic embryogenesis could be achieved when root derived calli after three subcultures were transferred from Murashige Skoog’s salts and vitamins (MS basal) medium with 2,4-dichlorophenoxyacetic acid (2,4-D) (0.1–5 mg/L) to a medium with abscisic acid (ABA) (0.5–4 mg/L), or exposed to eight different light spectra provided by light-emitting diode (LED) sources. Concentrations of ABA and LED light spectra had an influence on number of somatic embryos induced and proliferation of callus. Development of secondary somatic embryos and conversion of embryos to plantlets was achieved on a medium with ABA, or their exposure to red or blue lights in a special incubation chamber. Four months old tissue culture plants derived from somatic embryos showed significantly higher levels of chlorogenic acid (10.5 mg/g dw) compared to commercial product sold in Japanese market (0.55 mg/g dw). However, rutin was absent in tissue culture plants in contrast to commercial sample (0.33 mg/g dw). In this report, we describe in vitro plant regeneration system in P. japonicum via somatic embryogenesis and production of chlorogenic acid in tissue culture plants. The present study has application in further tissue culture propagation of elite plant material with high chlorogenic acid content, and identification of high yielding plants with the LC–MS method.
Tài liệu tham khảo
Ammirato PV (1987) Organizational events during somatic embryogenesis. In: Somers DA, Hackett WP, Biesboer DD Green CE (eds) Plant tissue and cell culture. Alan R. Liss, Inc., New York
Arima H, Ashida H, Danno G (2002) Rutin enhanced antibacterial activities of flavonoids against Bacillus cereus and Salmonella enteritidis. Biosci Biotechnol Biochem 66:1009–1014
Bajaj YPS (1995) Somatic embryogenesis and its applications for crop improvement. In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed-I. Biotechnology in agriculture and forestry, vol 30. Springer, Berlin, Heidelberg, pp 105–125. doi:10.1007/978-3-662-03091-2_8
Bourget CM (2008) An introduction to light-emitting diodes. HortScience 43:1944–1946
Briggs WR, Olney MA (2001) Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome. Plant Physiol 125:85–88
Briggs WR, Beck CF, Cashmore AR, Christie JM, Hunghes J, Jarillo JA, Kagawa T, Kanegae H, Liscum E, Nagatani A, Okada K, Salomon M, Rüdiger W, Sakai T, Takano M, Wada M, Watson JC (2001) The phototropin family of photoreceptors. Plant Cell 13:993–997
Chen IS, Chang CT, Sheen WS, Teng CM, Tsai IL, Duh CY, Ko FN (1996) Coumarins and antiplatelet aggregation constituents from Formosan Peucedanum japonicum. Phytochemistry 41:525–530
Chen CC, Chang HC, Kuo CL, Agrawal DC, Wu CR, Tsay HS (2014) In vitro propagation and analysis of secondary metabolites in Glossogyne tenuifolia (Hsiang-Ju)—a medicinal plant native to Taiwan. Bot Stud 55:45. doi:10.1186/s40529-014-0045-7
Cho AS, Jeon SM, Kim MJ, Yeo J, Seo K, Choi MS, Lee MK (2010) Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem Toxicol 48:937–943. doi:10.1016/j.fct.2010.01.003
Chung JP, Huang CY, Dai TE (2010) Spectral effects on embryogenesis and plantlet growth of Oncidium ‘Gower Ramsey’. Sci Hortic 124:511–516. doi:10.1016/j.scienta.2010.01.028
Clouse SD (2001) Integration of light and brassinosteroid signals in etiolated seedling growth. Trends Plant Sci 6:443–445
Deschner EE, Ruperto J, Wong G, Newmark HL (1991) Quercetin and rutin as inhibitors of azoxymethanol-induced colonic neoplasia. Carcinogenesis 12:1193–1196
Dudits D, Gyoryey J, Bogre L, Bako L (1995) Molecular biology of somatic embryogenesis. In: Thorpe TA (ed) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrect
Fang W, Chen CC, Lee YY, Chang MY (2011) Development of LED lids for tissue culture lighting. Acta Hort 907:397–402
Gaj MD (2004) Factors influencing somatic embryo-genesis induction and plant regeneration with particular reference to Arabidopsis thaliana L. Heynh. Plant Growth Reg 43:27–47. doi:10.1023/B:GROW.0000038275.29262.fb
Gutiérrez-Mora A, González-Gutiérrez AG, Rodríguez-Garay B, Ascencio-Cabral A, Lin LW (2012) Plant somatic embryogenesis: Some useful considerations. In: Sato KI (ed) Embryogenesis, InTech. doi:10.5772/36345
Hisamoto M, Kikuzaki H, Ohigashi H, Nakatani N (2003) Antioxidant compounds from the leaves of Peucedanum japonicum Thunb. J Agric Food Chem 51:5255–5261. doi:10.1021/jf0262458
Hisamoto M, Kikuzaki H, Nakatani N (2004) Constituents of the leaves of Peucedanum japonicum Thunb and their biological activity. J Agric Food Chem 52:445–450. doi:10.1021/jf0349127
Hsu CL, Yen GC (2007) Effects of flavonoids and phenolic acids on the inhibition of adipogenesis in 3T3-L1 adipocytes. J Agric Food Chem 55:8404–8410. doi:10.1021/jf071695r
Hsu CL, Hung SL, Yen GC (2006) Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity. J Agric Food Chem 54:4191–4197. doi:10.1021/jf0609882
Ibtissem B, Chedly A, Sfar S (2012) Antioxidant and antibacterial properties of Mesembryanthemum crystallinum and Carpobrotus edulis extracts. Adv Chem Eng Sci 2:359–365. doi:10.4236/aces.2012.23042
Iida Y, Watabe KI, Kamada H, Harada H (1992) Effects of abscisic acid on the induction of desiccation tolerance in carrot somatic embryos. J Plant Physiol 140:356–360. doi:10.1016/S0176-1617(11)81092-8
Jain SM, Gupta PK (eds) (2005) Protocol for somatic embryogenesis in woody plants. Forestry sciences, vol 77. Springer, Netherlands. doi: 10.1007/1-4020-2985-3
Kim SJ, Hahn EJ, Heo JW, Paek KY (2004) Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci Hortic 101:143–151. doi:10.1016/j.scienta.2003.10.003
Kuo CL, Agrawal DC, Chang HC, Chiu YT, Huang CP, Chen YL, Huang SH, Tsay HS (2015) In vitro culture and production of syringin and rutin in Saussurea involucrata (Kar. et Kir.)—an endangered medicinal plant. Bot Stud 56:12. doi:10.1186/s40529-015-0092-8
Lema-Rumińska J, Goncerzewicz K, Gabriel M (2013) Influence of abscisic acid and sucrose on somatic embryogenesis in Cactus Copiapoa tenuissima Ritt. Forma mostruosa. Sci World J 2013, 10.1155/2013/513985
Li BH, Ma XF, Wu XD, Tian WX (2006) Inhibitory activity of chlorogenic acid on enzymes involved in the fatty acid synthesis in animals and bacteria. IUBMB Life 58:39–46. doi:10.1080/15216540500507408
Li HM, Xu ZG, Tang CM (2010) Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss Organ Cult 103:155–163. doi:10.1007/s11240-010-9763-z
Massa GD, Kim HH, Wheeler RM, Mitchell CA (2008) Plant productivity in response to LED lighting. HortScience 43:1951–1956
Morrow RC (2008) LED lighting in horticulture. HortScience 43:1947–1950
Moshe R, Dalia E (2007) On the effect of light on shoot regeneration in petunia. Plant Cell Tiss Organ Cult 89:49–54. doi:10.1007/s11240-007-9215-6
Mujib A, Samaj J (2006) Somatic embryogenesis. Plant cell monographs, vol 2. Springer, Berlin. doi:10.1007/b136454
Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497
Nadel BL, Altman A, Ziv M (1990) Regulation of somatic embryogenesis in celery cell suspensions 2. Early detection of embryogenic potential and the induction of synchronized cell cultures. Plant Cell Tiss Organ Cult 20:119–124. doi:10.1007/BF00114709
Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M (2003) Responses of strawberry plantlets cultured in vitro under super bright red and blue light emitting diodes (LEDs). Plant Cell Tiss Organ Cult 73:43–52. doi:10.1023/A:1022638508007
Nugara RN, Inafuku M, Iwasaki H, Oku H (2014) Partially purified Peucedanum japonicum Thunb extracts exert anti-obesity effects in vitro. Nutrition 30:575–583. doi:10.1016/j.nut.2013.09.017
Nukitrangsan N, Okabe T, Toda T, Inafuku M, Iwasaki H, Yanagita T, Oku H (2011) Effect of Peucedanum japonicum Thunb on the expression of obesity related genes in mice on a high-fat diet. J Oleo Sci 60:527–536
Nukitrangsan N, Okabe T, Toda T, Inafuku M, Iwasaki H, Oku H (2012) Anti-obesity activity of Peucednum japonicum Thunb extract in obese diabetic animal model C57 BL/6 J Ham Slc-ob/ob mice. Intern J Life Sci Med Res 2:28–34. doi:10.5963/LSMR0202004
Okabe T, Toda T, Nukitrangsan N, Inafuku M, Iwasaki H, Oku H (2011) Peucedanum japonicum Thunb inhibits high-fat diet induced obesity in mice. Phytother Res 25:870–877. doi:10.1002/ptr.3355
Olle M, Versile A (2013) The effects of light-emitting diode lighting on greenhouse plant growth and quality. Agric Food Sci 22:223–234
Ouzounis T, Rosenqvist E, Ottosen CO (2015) Spectral effects of artificial light on plant physiology and secondary metabolism—a review. HortScience 50:1128–1135
Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and application in plant breeding. Euphytica 81:93–107. doi:10.1007/BF00022463
Saebo A, Krekling T, Appelgren M (1995) Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tiss Organ Cult 41:177–185. doi:10.1007/BF00051588
Thorpe TA (ed) (1995) In vitro embryogenesis in plants. Kluwer Academic Publishers, Dordrecht
Watt EVD, Pretorius JC (2001) Purification and identification of active antibacterial components in Carpobrotusedulis L. J Ethnopharmacol 76:87–91. doi:10.1016/S0378-8741(01)00197-0
Yang J, Guo J, Yuan J (2008) In vitro antioxidant properties of rutin. LWT 41:1060–1066. doi:10.1016/j.lwt.2007.06.010
Yang EJ, Kim SS, Oh TH, Song G, Kim KN, Kim JY, Lee NH, Hyun CG (2009) Peucedenum japonicum and citrus unshiu essential oils inhibit the growth of antibiotic-resistant skin pathogens. Annals Microbiol 59:623–628. doi:10.1007/BF03175155