Influence of Gate Voltage Operation on Effective Mobility of Electrolyte-Gated Organic Transistors

Macromolecular Research - Tập 30 - Trang 707-711 - 2022
Vivian Nketia-Yawson1, Benjamin Nketia-Yawson1, Jea Woong Jo1
1Department of Energy and Materials Engineering and Research Center for Photoenergy Harvesting & Conversion Technology (phct), Dongguk University, Seoul, Korea

Tóm tắt

Low-voltage operation has long been a beneficial characteristic of electrolyte-gated organic transistors (EGOTs) because of the high capacitance of the electrolyte dielectric layer. Operating below 3 V, several reported EGOTs have effective mobilities above 1 cm2V−1s−1 based on the recently introduced reliability factor for organic field-effect transistors (OFETs). In this study, we report on the influence of gate voltage operation on the effective mobilities of EGOTs using poly(3-hexylthiophene) (P3HT) semiconductor and electrolyte dielectric operating at different gate voltages of −1, −1.5, and −2 V. Average field-effect mobilities (μFET) of 2.35 ± 0.41 (2.39 ± 0.27), 3.74 ± 0.33 (2.95 ± 0.32), and 3.30 ± 0.44 (2.81 ± 0.38) cm2 V−1 s−1 are measured in the saturation (linear) regimes for devices operating at −1, −1.5 and −2 V, respectively. With a reliability factor of 74.9 ± 2.8% (86.2 ± 2.2%) in the saturation (linear) regime, devices at −1.5 V measured the highest average effective mobility (μeff) of 2.79 ± 0.22 (2.54 ± 0.29) cm2 V−1 s−1 in the saturation (linear) regime due to efficient charge transport with minimal charge scattering. Our results highlight fundamental optimization techniques helpful for achieving optimal effects.

Tài liệu tham khảo

C. Yan, W. Kang, J. Wang, M. Cui, X. Wang, C. Y. Foo, K. J. Chee, and P. S. Lee, ACS Nano, 8, 316 (2014). G. Cai, J. Wang, and P. S. Lee, Acc. Chem. Res., 49, 1469 (2016). J. Rivnay, S. Inal, A. Salleo, R. M. Owens, M. Berggren, and G. G. Malliaras, Nat. Rev. Mater., 3, 17086 (2018). M. Sophocleous, L. Contat-Rodrigo, E. García-Breijo, and J. Georgiou, IEEE Sens. J., 21, 3977 (2021). C. Di, F. Zhang, and D. Zhu, Adv. Mater., 25, 313 (2013). B. Nketia-Yawson, A-R. Jung, H. D. Nguyen, K.-K. Lee, B. Kim, and Y.-Y. Noh, ACS Appl. Mater. Interfaces, 10, 32492 (2018). B. Nketia-Yawson, G. D. Tabi, J. W. Jo, and Y.-Y. Noh, Adv. Mater. Interfaces, 7, 2000842 (2020). L. Herlogsson, X. Crispin, N. D. Robinson, M. Sandberg, O. J. Hagel, G. Gustafsson, and M. Berggren, Adv. Mater., 19, 97 (2007). A. Malti, E. O. Gabrielsson, M. Berggren, and X. Crispin, Appl. Phys. Lett., 99, 063305 (2011). M. Nikolka, D. Simatos, A. Foudeh, R. Pfattner, I. McCulloch, and Z. Bao, ACS Appl. Mater. Interfaces, 12, 40581 (2020). M. J. Panzer, and C. D. Frisbie, Adv. Funct. Mater., 16, 1051 (2006). B. Nketia-Yawson, S.-J. Kang, G. D. Tabi, A. Perinot, M. Caironi, A. Facchetti, Y.-Y. Noh, Adv. Mater., 29, 1605685 (2017). M. J. Panzer, and C. Daniel Frisbie, J. Am. Chem. Soc., 129, 6599 (2007). S. Wang, M. Ha, M. Manno, C. D. Frisbie, and C. Leighton, Nat. Commun., 3, 1210 (2012). S. H. Kim, K. Hong, W. Xie, K. H. Lee, S. Zhang, T. P. Lodge, and C. D. Frisbie, Adv. Mater., 25, 1822 (2013). J. Lee, M. J. Panzer, Y. He, T. P. Lodge, and C. D. Frisbie, J. Am. Chem. Soc., 129, 4532 (2007). J. H. Cho, J. Lee, Y. He, B. Kim, T. P. Lodge, and C. D. Frisbie, Adv. Mater., 20, 686 (2008). J. H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M. J. Renn, T. P. Lodge, and C. D. Frisbie, Nat. Mater., 7, 900 (2008). J. Lee, L. G. Kaake, J. H. Cho, X.-Y. Zhu, T. P. Lodge and C. D. Frisbie, J. Phys. Chem. C, 113, 8972 (2009). K. H. Lee, M. S. Kang, S. Zhang, Y. Gu, T. P. Lodge, and C. D. Frisbie, Adv. Mater., 24, 4457 (2012). S. H. Kim, K. Hong, K. H. Lee, and C. D. Frisbie, ACS Appl. Mater. Interfaces, 5, 6580 (2013). H. M. Yang, Y. K. Kwon, S. B. Lee, S. Kim, K. Hong, and K. H. Lee, ACS Appl. Mater. Interfaces, 9, 8813 (2017). Q. Thiburce, L. Porcarelli, D. Mecerreyes, and A. J. Campbell, Appl. Phys. Lett., 110, 233302 (2017). K. G. Cho, H. J. Kim, H. M. Yang, K. H. Seol, S. J. Lee, and K. H. Lee, ACS Appl. Mater. Interfaces, 10, 40672 (2018). B. Nketia-Yawson, G. D. Tabi, and Y.-Y. Noh, ACS Appl. Mater. Interfaces, 11, 17610 (2019). Y. Na, and F. S. Kim, Chem. Mater., 31, 4759 (2019). J. Zaumseil, and H. Sirringhaus, Chem. Rev., 107, 1296 (2007). M. S. Kang, and C. D. Frisbie, ChemPhysChem, 14, 1547 (2013). Y. Xu, H. Sun, E.-Y. Shin, Y.-F. Lin, W. Li, and Y.-Y. Noh, Adv. Mater., 28, 8531 (2016). J. Z. Wang, Z. H. Zheng, and H. Sirringhaus, Appl. Phys. Lett., 89, 083513 (2006). K. Tsukagoshi, F. Fujimori, T. Minari, T. Miyadera, T. Hamano, and Y. Aoyagi, Appl. Phys. Lett., 91, 113508 (2007). H. H. Choi, K. Cho, C. D. Frisbie, H. Sirringhaus, and V. Podzorov, Nat. Mater., 17, 2 (2018). Y. Xu, H. Sun, A. Liu, H. Zhu, B. Li, T. Minari, F. Balestra, G. Ghibaudo, and Y.-Y. Noh, Adv. Funct. Mater., 28, 1803907 (2018).