Ảnh hưởng của các phương pháp tiền xử lý khác nhau đến đặc điểm của bùn thải đã được tiêu hóa kỵ khí: Tính phù hợp cho việc xử lý cuối cùng

Water, Air, and Soil Pollution - Tập 199 - Trang 311-321 - 2008
Marta Carballa1, Francisco Omil1, Juan M. Lema1
1Department of Chemical Engineering, School of Engineering, University of Santiago de Compostela, Santiago de Compostela, Spain

Tóm tắt

Cuộc tranh luận về tái chế và xử lý bùn thải gần đây đã trở thành một chủ đề được quan tâm ngày càng tăng do mối lo ngại về các rủi ro tiềm ẩn của việc sử dụng nó trong nông nghiệp đối với sức khỏe con người và môi trường. Thực tế này đã dẫn đến các điều chỉnh trong chính sách và quy định của chính phủ, đồng thời nhiều quy trình điều trị mới đã được đề xuất nhằm làm cho việc tái chế và tái sử dụng bùn thải sinh hoạt trở nên bền vững. Trong công trình này, việc sử dụng một số phương pháp tiền xử lý (kiềm, nhiệt và ozon hóa) kết hợp với quá trình tiêu hóa kỵ khí thông thường đã được đánh giá về chất lượng bùn thải đã được tiêu hóa liên quan đến các mầm bệnh, tính chất tách nước, kim loại nặng và các chất ô nhiễm hữu cơ. Tất cả các phương pháp tiền xử lý đều chứng minh được hiệu quả trong việc đạt yêu cầu được đề xuất trong Tài liệu làm việc về bùn do Ủy ban Châu Âu soạn thảo (CEC, Chỉ thị Hội đồng ngày 27 tháng 4 năm 2000 về Tài liệu làm việc về bùn - bản nháp lần thứ ba. Brussels: Ủy ban Châu Âu DG Môi trường. Lấy từ http://ec.europa.eu/environment/waste/sludge/pdf/sludge_en.pdf , 2000a) và cũng những yêu cầu đã được thiết lập bởi Cơ quan Bảo vệ Môi trường Hoa Kỳ (EPA, Tiêu chuẩn cho việc xử lý và sử dụng bùn thải, phần 503. Lấy từ http://www.epa.state.il.us/public-notices/2004/lincoln-trails-mhp/draft-permit.pdf , 1993).

Từ khóa


Tài liệu tham khảo

Ahn, K. H., Park, K. Y., Maeng, S. K., Hwang, J. H., Lee, J. W., Song, K. G., et al. (2002). Ozonation of wastewater and ozonation for recycling. Water Science and Technology, 46(10), 71–77. Anderson, N. J., Dixon, D. R., Harbour, P. J., & Scales, P. J. (2002). Complete characterization of thermally treated sludge. Water Science and Technology, 46(10), 51–54. APHA-AWWA-WPCF (Eds.).(2001). Compendium of methods for the microbiological examination of foods. Washington, DC: American Public Health Association. APHA-AWWA-WPCF (Eds.).(2005). Standard methods for the examination of water and wastewater. Washington, DC: American Public Health Association. Araujo, M., Sueiro, R. A., Gómez, M. J., & Garrido, M. J. (2001). Evaluation of fluorogenic TSC agar for recovering Clostridium perfringens in groundwater samples. Water Science and Technology, 43, 201–204. Battersby, N., & Wilson, V. (1989). Survey of the anaerobic biodegradation potential of organic chemicals in digesting sludge. Applied and Environmental Microbiology, 55, 433–439. Battimelli, A., Millet, C., Delgenes, J. P., & Moletta, R. (2003). Anaerobic digestion of waste activated sludge combined with ozone post-treatment and recycling. Water Science and Technology, 48(4), 61–68. Bivins, J. L., & Novak, J. T. (2001). Changes in dewatering properties between thermophilic and mesophilic stages in temperature-phased anaerobic digestion systems. Water Environment Research, 73, 444–449. doi:10.2175/106143001X139498. Carballa, M., Omil, F., Alder, A. C., & Lema, J. M. (2006). Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products. Water Science and Technology, 53(8), 109–117. doi:10.2166/wst.2006.241. Carballa, M., Omil, F., Ternes, T., & Lema, J. M. (2007a). Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge. Water Research, 41(10), 2139–2150. doi:10.1016/j.watres.2007.02.012. Carballa, M., Manterola, G., Larrea, L., Ternes, T., Omil, F., & Lema, J. M. (2007b). Influence of ozone pre-treatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products. Chemosphere, 67(7), 1444–1452. doi:10.1016/j.chemosphere.2006.10.004. CEC (1986). Council Directive of 12 June 1986 on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Council of the European Communities (Directive 86/278/EEC). CEC (1991). Council Directive of 21 May 1991 on urban waste water treatment. Council of the European Communities (Directive 91/271/EEC). CEC (1999). Council Directive of 26 April 1999 on the landfill use of waste. Council of the European Communities (Directive 1999/31/EC). CEC.(2000a). Council Directive of 27 April 2000 on Working Document on Sludge—third draft. Brussels: European Commission DG Environment. Retrieved from http://ec.europa.eu/environment/waste/sludge/pdf/sludge_en.pdf. CEC (2000b). Council Directive of 4 December 2000 on the incineration and the co-incineration of industrial and municipal solid waste. Council of the European Communities (Directive 2000/76/EEC). CEC.(2004). Draft discussion document for the AD HOC meeting on biowastes and sludge 15–16 January 2004, Brussels. Brussels: Council of the European Communities. Retrieved from http://www.ewaonline.de/downloads/WD_sludge.pdf. Chiu, Y. C., Chang, C. N., Lin, J. G., & Huang, S. J. (1997). Alkaline and ultrasonic pretreatment of sludge before anaerobic digestion. Water Science and Technology, 36(11), 155–162. doi:10.1016/S0273-1223(97)00681-1. Chu, C. P., Feng, W. H., Chang, B. V., & Lee, D. J. (1999). Reduction in microbial density level through freezing and thawing. Water Research, 33, 3532–3535. doi:10.1016/S0043-1354(99)00067-6. Climent, M., Ferrer, I., Baeza, M. D., Artola, A., Vázquez, F., & Font, X. (2007). Effects of thermal and mechanical pretreatments of secondary sludge on biogas production under thermophilic conditions. Chemical Engineering Journal, 133(1–3), 335–342. doi:10.1016/j.cej.2007.02.020. Darvodelsky, P., & Fien, M. (2005). The health impact of biosolids use on land. Water, 21(12), 20–22. Dewil, R., Appels, L., Baeyens, J., & Degreve, J. (2007). Peroxidation enhances the biogas production in the anaerobic digestion of biosolids. Journal of Hazardous Materials, 146(3), 577–581. doi:10.1016/j.jhazmat.2007.04.059. FDA (Eds.) (1995). Bacteriological analytical manual. Gaithersburg, USA: U.S. Food and Drug Administration, AOAC International. Fernández-Cirelli, A., Ojeda, C., Castro, M. J. L., & Salgot, M. (2008). Surfactants in sludge-amended agricultural soils: a review. Environmental Chemistry Letters, 6, 135–148. doi:10.1007/s10311-008-0146-1. Goel, R., Tokutomi, T., Yasui, H., & Naike, T. (2003). Optimal configuration for anaerobic digestion with ozonation. Water Science and Technology, 48(4), 85–96. Guo, L., Li, X. M., Bo, X., Yang, Q., Zeng, G. M., Liao, D. X., et al. (2008). Impacts of sterilization, microwave and ultrasonication pre-treatment on hydrogen producing using waste sludge. Bioresource Technology, 99(9), 3651–3658. doi:10.1016/j.biortech.2007.07.026. Han, Y., Sung, S., & Dague, R. R. (1997). Temperature-phased anaerobic digestion of wastewater sludge. Water Science and Technology, 36(6–7), 367–374. doi:10.1016/S0273-1223(97)00544-1. Holt, M. S., & Bernstei, S. L. (1992). Linear alkylbenzene in sewage sludges and sludge amended soils. Water Research, 26, 613–624. doi:10.1016/0043-1354(92)90235-V. Hong, S. M., Park, J. K., & Lee, Y. O. (2004). Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Research, 38(6), 1615–1625. doi:10.1016/j.watres.2003.12.011. Hwang, S., Jang, H., Lee, M., Song, J., & Kim, S. (2006). Characteristics of sludge reduction in an integrated pretreatment and aerobic digestion process. Water Science and Technology, 53(7), 235–242. doi:10.2166/wst.2006.228. Ikehata, K., & El-Din, M. G. (2004). Degradation of recalcitrant surfactants in wastewater by ozonation and advanced oxidation processes: a review. Ozone Science and Engineering, 26(4), 327–343. doi:10.1080/01919510490482160. Jan, T. W., Adav, S. S., Lee, D. J., Wu, R. M., Su, A., & Tay, J. H. (2008). Hydrogen fermentation and methane production from sludge with pretreatments. Energy & Fuels, 22(1), 98–102. doi:10.1021/ef700278j. Jones, K. C., & Northcott, G. L. (2000). Organic contaminants in sewage sludges: a survey of UK samples and a consideration of their significance. Final report to the Department of the Environment, Transport and the Regions. Water Quality Division. Kepp, U., Machenbach, I., Weisz, N., & Solheim, O. E. (2000). Enhanced stabilisation of sewage sludge through thermal hydrolysis—three year of experience with full-scale plant. Water Science and Technology, 42(9), 89–96. Killilea, J. E., Colleran, E., & Scahill, C. (2000). Establishing procedures for design, operation and maintenance of sewage sludge anaerobic treatment plants. Water Science and Technology, 41(3), 305–312. Kim, J., Park, C., Kim, T. H., Lee, M., Kim, S., Kim, S. W., et al. (2002). Effects of various pretreatments for enhanced anaerobic digestion with activated sludge. Journal of Bioscience and Bioengineering, 95(3), 271–275. Laturnus, F., von Arnold, K., & Grøn, C. (2007). Organic contaminants from sewage sludge applied to agricultural soils. Environmental Science and Pollution Research, 14(1), 53–60. doi:10.1065/espr2006.12.365. Lin, J. G., Cahn, C. N., & Chang, S. C. (1997). Enhancement of anaerobic digestion of waste activated sludge by alkaline solubilization. Bioresource Technology, 62(3), 85–90. doi:10.1016/S0960-8524(97)00121-1. Magoarou, P. (2000). Urban wastewater in Europe—what about the sludge? (pp. 9–16). Proceedings of the EU Workshop on Problems Around Sludge, Stresa, Italy, November. Odegaard, H. (2004). Sludge minimization technologies—an overview. Water Science and Technology, 49(10), 31–40. Petrovic, M., & Barceló, D. (2000). Determination of anionic and nonionic surfactants, their degradation products and endocrine-disrupting compounds in sewage sludge by liquid chromatography/mass spectrometry. Analytical Chemistry, 72(19), 4560–4567. doi:10.1021/ac000306o. Stedman, L. (2005). Chemical conditioning of sludge. Water, 21(12), 23–24. Tapana, C., & Pagilla, K. R. (2000). Anaerobic thermophilic/mesophilic dual-stage sludge treatment. Journal of Environmental Engineering, 126(9), 796–801. doi:10.1061/(ASCE)0733-9372(2000)126:9(796). Tenenbaum, D. (1997). The beauty of biosolids. Environmental Health Perspectives, 105, 32–37. doi:10.2307/3433058. Trably, E., & Patureau, D. (2006). Successful treatment of low PAH-contaminated sewage sludge in aerobic bioreactors. Environmental Science and Pollution Research, 13, 170–176. doi:10.1065/espr2005.06.263. Uradzinski, J., Wysok, B., Bielicki, Z., & Gomolka-Pawlicka, M. (2005). Ozonation as an alternative method of disinfecting knives for use in meat processing. Bulletin of the Veterinary Institute in PuLawy, 49(4), 399–402. U.S. Environmental Protection Agency (EPA). (1993). Standards for the disposal and utilization of sewage sludge, part 503. Retrieved from http://www.epa.state.il.us/public-notices/2004/lincoln-trails-mhp/draft-permit.pdf. Vanhulle, S., Trovaslet, M., Enaud, E., Lucas, M., Taghavi, S., Van Der Lelie, D., et al. (2008). Decolorization, cytotoxicity and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater. Environmental Science & Technology, 42(2), 584–589. doi:10.1021/es071300k. Weber, W. J. (1972). Physicochemical processes for water quality control. New York: Wiley-Interscience. Weemaes, M., Grootaerd, H., Simoens, F., & Verstraete, W. (2000). Anaerobic digestion of ozonized biosolids. Water Research, 34(8), 2330–2336. doi:10.1016/S0043-1354(99)00373-5.