Influence of Ba Doping on the Electrical Behaviour of La0.9Sr0.1Al0.9Mg0.1O3−δ System for a Solid Electrolyte

Journal of Electronic Materials - Tập 50 - Trang 1010-1021 - 2021
Onkar Nath Verma1,2, Saurabh Singh2,3, Vivek K. Singh1, M. Najim4, Raghvendra Pandey2,5, Prabhakar Singh2
1Department of Physics, Shri Mata Vaishno Devi University, Kakryal, Katra, India
2Department of Physics, Indian Institute of Technology (BHU) Varanasi, Varanasi, India
3Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, India
4Department of Electrical and Electronic Engineering, College of Engineering, University of Jeddah, Jeddah, Saudi Arabia
5Department of Physics, A.R.S.D. College, University of Delhi, New Delhi, India

Tóm tắt

Barium (Ba)-incorporated strontium and magnesium-doped lanthanum aluminate, La0.9−xSr0.1BaxAl0.9Mg0.1O3−δ (LSBAM, with x = 0.00, 0.01 and 0.03) designated as LSBAM 00, LSBAM 01 and LSBAM 03, respectively, were effectively synthesized via citrate–nitrate-based auto-combustion method taking citric acid (C6H8O7·H2O) as a fuel agent. The electrical properties of the synthesized compositions were investigated as electrolyte for electrochemical applications. The powders were also characterized by simultaneous differential thermal analysis and thermogravimetric analysis to confirm the reaction temperature of the final product from the precursor. The X-ray Rietveld refinement patterns showed the rhombohedral structure with space group R-3c of the investigated systems. The scanning electron microscope images depicted fairly dense micrographs that are essential for a good electrolyte. The crystallite sizes were estimated to be in the range of 40 nm to 55 nm. The effect of doping has been investigated for the further improvement of ionic conducting efficiency of the systems. The electrical conductivity of the La0.9−xSr0.1BaxAl0.9Mg0.1O3−δ system has been measured at different temperatures between 400°C and 700°C to reveal the contribution of grains, grain boundaries and electrode specimen interface response to the total conductivity. The values of activation energy (Ea) for total conductivity suggest ionic conduction in the system that may primarily be due to the diffusion of O2− ions via oxygen vacancy sites. The conductivity for all compositions was found to increase with increasing temperature.

Tài liệu tham khảo

J. Song, Y. Yang, Y.L. Zhao, M. Che, L. Zhu, X.Q. Gu, and Y.H. Qiang, Mater. Sci. Eng. B 174, 18 (2017). Y.H. Song, S.H. Choi, J.S. Yoo, and B.K. Kang, Chem. Eng. J. 313, 465 (2017). S.Y. Cho, I.T. Kim, and K.S. Hong, J. Mater. Res. 14, 114 (1999). R.W. Simon, C.E. Platt, A.E. Lee, G.S. Lee, K.P. Daly, M.S. Wire, J.A. Luine, and M. Urbanik, Appl. Phys. Lett. 53, 2677 (1988). R. Spinicci, P. Marini, S.D. Rossi, M. Faticanti, and P. Porta, J. Mol. Catal. A Chem. 176, 253 (2001). T. Takahashi and H. Iwahara, Energy Convers. 11, 105 (1971). A.B. Stambouli and E. Traversa, Renew. Sustain. Energy Rev. 6, 433 (2002). M. Lorenzo, C.A.J. Fisher, and M.S. Islam, Chem. Soc. Rev. 39, 4370 (2010). S.P.S. Badwal, Solid State Ion. 52, 23 (1992). T. Ishihara, M. Hideaki, and T. Yusaku, J. Am. Chem. Soc. 116, 3801 (1994). M. Feng and J.B. Goodenough, Eur. J. Solid State Inorg. Chem. 31, 663 (1994). P. Kaur and K. Singh, Ceram. Int. 46, 5521 (2020). I. Sreedhar, B. Agarwal, P. Goyal, and A. Agarwal, J. Solid State Electrochem. 24, 1239 (2020). C.K. Wincewicz and J.S. Cooper, J. Power Sources 140, 280 (2005). G. Qin, X. Huang, J. Chen, and Z. He, Powder Technol. 235, 880 (2013). S.K. Pratihar, Research Signpost, Trivandrum, India, (2008). S. Li, Ph.D. Diss. KTH, (2009). J.Y. Park and G.M. Choi, Solid State. Ion. 154, 535 (2002). L. Dorthe, F.W. Poulsen, and M. Mogensen, Solid State Ion. 128, 91 (2000). K. Nomura and S. Tanase, Solid State Ion. 98, 229 (1997). D. Lybye and N. Bonanos, Solid State Ion. 125, 339 (1999). H. Fujii, Y. Katayama, T. Shimura, and H. Iwahara, J. Electroceram. 2, 119 (1998). H. Hayashi, H. Inaba, M. Matsuyama, N.G. Lan, M. Dokiya, and H. Tagawa, Solid State Ion. 122, 1 (1999). M. Mori, Y. Hiei, and T. Yamamoto, J. Am. Ceram. Soc. 84, 781 (2001). G.F. Sun, X.W. Qi, T. Zhang, X.Y. Zhang, and H.H. Chen, Adv. Mater. Res. 624, 30 (2013). X.Y. Zhang, T. Zhang, X.W. Qi, J.Q. Qi, G.F. Sun, H.H. Chen, and R.X. Zhong, Adv. Mater. Res. 624, 26 (2013). A.K. Adak and P. Pramanik, Mater. Lett. 30, 269 (1997). J.Y. Park and H.J. Park, J. Korean Cryst. Growth Cryst. Technol. 29, 187 (2019). S. Singh, R. Pandey, S. Presto, M.P. Carpanese, A. Barbucci, M. Viviani, and P. Singh, Energies 12, 4042 (2019). T.L. Nguyen, M. Dokiya, S. Wang, H. Tagawa, and T. Hashimoto, Solid State Ion. 130, 229 (2000). M. Fabián, B.I. Arias-Serrano, A.A. Yaremchenko, H. Kolev, M. Kaňuchová, and J. Briančin, J. Eur. Ceram. Soc. 39, 5298 (2019). P.N. Huang and A. Petric, J. Electrochem. 143, 1644 (1996). T.L. Nguyenand and M. Dokiya, Solid State Ion. 132, 217 (2000). T. Chen, R. Pan, and K. Fung, J. Phys. Chem. Solids 69, 540 (2008). D. Wyrzykowski, E. Hebanowska, G. Nowak-Wiczk, M. Makowski, and L. Chmurzyński, J. Therm. Anal. Calorim. 104, 731 (2011). S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei, and Y. Chuin-Tih, J. Phys. Chem. B 107, 1044 (2003). J. Chandradass and K.H. Kim, J. Alloys Compd. 48, 31 (2009). V. Singh, D.T. Naidu, R.P.S. Chakradhar, Y.C. Ratnakaram, J.J. Zhu, and M. Soni, Phys. B Condens. Matter 403, 3781 (2008). O.N. Verma, P.K. Jha, and P. Singh, J. Appl. Phys. 122, 225106 (2017). N.Q. Minh, J. Am. Ceram. Soc. 76, 563 (1993). O.N. Verma, N.K. Singh, and P. Singh, RSC Adv. 5, 21614 (2015). R.D. Shannon, Acta Cryst. A32, 751 (1976). A. Tschöpe, E. Sommer, and R. Birringer, Solid State Ion. 139, 255 (2001). A. Tschöpe, Solid State Ion. 139, 267 (2001). S.U. Sharath, R.K. Singh, B.P. Singh, P. Kumar, and P. Singh, J. Am. Ceram. Soc. 96, 3127 (2013). A.P. Sakhya, A. Dutta, and T.P. Sinha, Appl. Phys. A Mater. Sci. Process. 114, 1097 (2014). N.K. Singh, P. Singh, D. Kumar, and O. Parkash, Ionics (Kiel) 18, 127 (2012). N. Jaiswal, N.K. Singh, D. Kumar, and O. Parkash, J. Power Sources 202, 78 (2012). I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, and M.M. Hasan, J. Appl. Phys. 112, 074105 (2012). M.E. Orazem, N. Pébère, and B. Tribollet, J. Electrochem. B 153, 129 (2006). O.N. Verma, P.A. Jha, A. Melkeri, and P. Singh, Phys. B Condens. Matter 521, 230 (2017). K. Hoang and M.D. Johannes, J. Condens. Matter Phys. 30, 293001 (2018). S. Park, S. Choi, K.S. Jun, H. Kim, S. Rhee, and Y.J. Park, 44th Eur. Solid State Device Research Conference (ESSDERC), IEEE 50 (2014).