Influence of Al Substitution and Crystal Size on the Room-Temperature Mössbauer Spectrum of Hematite
Tóm tắt
Mössbauer spectra of 15 hematites with Al substitutions between 0 and 10 mole % were taken at room temperature. X-ray powder diffraction indicated dimensions of these hematites in the c-direction to range upwards from 27 nm to crystals large enough to show no line broadening. The Mössbauer spectra showed that magnetic hyperfine fields decreased both with increasing Al-for-Fe substitution and with decreasing crystal size. These relationships indicate that hyperfine field variations cannot, as has been done in the past, be unequivocally related to Al substitution alone. Hyperfine field reductions were paralleled by Mössbauer line broadening due to hyperfine field distributions. Only the hematites heated to 1000°C showed a significant variation of quadrupole splittings with Al substitution. No dependence of quadrupole splitting on crystal size was observed, indicating no detectable distortion of coordination polyhedra in the particle size range studied.
Tài liệu tham khảo
Bowen, L. H. and Weed, S. B. (1984) Mössbauer spectroscopy of soils and sediments: in Chemical Mössbauer Spectroscopy, R. H. Herber, ed., Plenum Publishing Corp., New York, 217–242.
DeGrave, E., Bowen, L. H., and Weed, S. B. (1982) Mössbauer study of aluminum-substituted hematites: J. Magnetism Magnetic Mater. 27, 98–108.
DeGrave, E., Verbeeck, A. E., and Chambaere, D. G. (1985) Influence of small aluminum substitutions on the hematite lattice: Phys. Lett. A 107, 181–184.
Fysh, S. A. and Clark, P. E. (1982) Aluminous hematite: a Mössbauer study. Phys. Chem. Minerals 8, 257–267.
Ibanga, I. J., Buol, S. W., Weed, S. B., and Bowen, L. H. (1983) Iron oxides in petroferric materials: Soil Sci. Soc. Amer. J. 47, 1240–1246.
Janot, C. and Gibert, H. (1970) Les constituants du fer dans certaines bauxites naturelles étudiées par effet Mössbauer: Bull. Soc. Franç. Minéral. Crist. 93, 213–223.
Janot, C., Gibert, H., and Tobias, C. (1973) Caractérisation de kaolinites ferrifères par spectrométrie Mössbauer: Bull. Soc. Franç. Minéral. Crist. 96, 281–291.
Jónás, K., Solymár, K., and Zöldi, J. (1980) Some applications of Mössbauer spectroscopy for the quantitative analysis of minerals and mineral mixtures. J. Molec. Struct. 60, 449–452.
Krén, E., Molnàr, B., Svàb, E., and Zsoldos, É. (1974) Neutron diffraction study of the (1 - x)αFe2O3-xAl2O3 system: Solid State Comm. 15, 1707–1710.
Kündig, W., Bömmel, H., Constabaris, G., and Lindquist, R. H. (1966) Some properties of supported small α-Fe2O3 particles determined with the Mössbauer effect: Phys. Rev. 142, 327–333.
Morin, F. J. (1950) Magnetic susceptibility of αFe2O3 and αFe2O3 with added titanium: Phys. Rev. 78, 819–820.
Mørup, S. (1983) Magnetic hyperfine splitting in Mössbauer spectra of microcrystals: J. Magnetism Magnetic Mater. 37, 39–50.
Murad, E. (1984) High-precision determination of magnetic hyperfine fields by Mössbauer spectroscopy using an internal standard: J. Phys. E 17, 736–737.
Murad, E. (1985) The influence of aluminium substitution on the absorption of gamma-rays in hematite: Phys. Lett. A 111, 79–82.
Murad, E. and Schwertmann, U. (1983) The influence of aluminium substitution and crystallinity on the Mössbauer spectrum of goethite: Clay Miner. 18, 301–312.
Nininger, R. C. and Schroeer, D. (1978) Mössbauer studies of the Morin transition in bulk and microcrystalline α-Fe2O3: J. Phys. Chem. Solids 39, 137–144.
Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M., and Lewis, D. G. (1979) The influence of aluminum on iron oxides. Part II. Preparation and properties of Al-substituted hematites: Clays & Clay Minerals 27, 105–112.
Schwertmann, U. and Kämpf, N. (1985) Properties of soil goethite and hematite in kaolinitic soils of southern and central Brazil: Soil Sci. 139, 344–350.
Tsuji, T., Naito, K., and Ishigure, K. (1984) Effect of particle size on Mössbauer parameters of α-Fe2O3: Phys. Stat. Sol. α82, K57–K61.
Violet, C. E. and Pipkorn, D. N. (1971) Mössbauer line positions and hyperfine interactions in α iron: J. Appl. Phys. 42, 4339–4342.