Sự myelin hóa viêm nhiễm gây ra sự thay đổi ở tế bào glia và mất đi tế bào hạch thần kinh trong võng mạc của mô hình bệnh viêm não tự miễn dịch

Springer Science and Business Media LLC - Tập 10 - Trang 1-12 - 2013
Lioba Horstmann1, Heiko Schmid1, André P Heinen2, Florian C Kurschus2, H Burkhard Dick1, Stephanie C Joachim1
1Experimental Eye Research Institute, Ruhr University Eye Hospital, Bochum, Germany
2Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Germany

Tóm tắt

Bệnh mãn tính đa xơ cứng (MS) thường đi kèm với tình trạng viêm dây thần kinh thị giác. Một số bệnh nhân trải qua mất thị lực vĩnh viễn. Chúng tôi đã xem xét liệu mức độ thâm nhập và mất myelin của dây thần kinh thị giác có ảnh hưởng đến độ nặng của các triệu chứng lâm sàng trong mô hình viêm não tự miễn dịch (EAE) hay không. Sự mất mát của các tế bào hạch võng mạc (RGC) và những thay đổi trong hoạt động của tế bào glia cũng được nghiên cứu. Chuột C57BL/6 được miễn dịch với peptide MOG35-55 trong dung dịch phụ gia Freund hoàn chỉnh (CFA) và nhóm đối chứng nhận PBS trong CFA. Sau đó, vào ngày thứ 23 sau khi miễn dịch, mắt được chuẩn bị để làm phẳng và nhuộm bằng Nissl để đánh giá mật độ thần kinh. Các triệu chứng lâm sàng của EAE cũng như sự thâm nhập tế bào và mất myelin trong dây thần kinh thị giác được kiểm tra. Mẫu cắt võng mạc được nhuộm bằng thuốc nhuộm hematoxylin và eosin cũng như thuốc nhuộm bạc. Kỹ thuật hóa mô miễn dịch (immunohistochemistry) được sử dụng để đánh dấu các tế bào RGC (Brn-3a), tế bào apoptotic (caspase 3), macroglia (protein sợi glial acid (GFAP)), microglia (Iba1), đại thực bào (F 4/80) và sự tiết interleukin-6 (IL-6). Các triệu chứng EAE bắt đầu vào ngày thứ 8 và đạt đỉnh vào ngày thứ 15. Sự thâm nhập tế bào (P = 0.0047) và mất myelin (P = 0.0018) của dây thần kinh EAE tương quan với điểm số lâm sàng (r > 0.8). EAE dẫn đến mất đáng kể các tế bào RGC (P < 0.0001). Số lượng tế bào caspase 3+ tăng lên thấy rõ trong các động vật này (P = 0.0222). Chúng cho thấy sự biểu hiện GFAP tăng (P < 0.0002) và số lượng tế bào microglia cao hơn (P < 0.0001). Ngoài ra, cũng quan sát thấy nhiều đại thực bào hơn và sự tiết IL-6 ở chuột EAE. Sự miễn dịch MOG dẫn đến chứng viêm thần kinh thị giác và mất RGC. Độ nặng của EAE có liên quan đến mức độ nặng của tình trạng viêm dây thần kinh thị giác và mất myelin. EAE không chỉ ảnh hưởng đến sự kích hoạt của các tín hiệu apoptosis mà còn gây ra phản ứng glia trong võng mạc.

Từ khóa

#bệnh đa xơ cứng #viêm dây thần kinh thị giác #tế bào hạch võng mạc #EAE #phản ứng của tế bào glia #thâm nhập tế bào #mất myelin

Tài liệu tham khảo

Shindler KS, Revere K, Dutt M, Ying GS, Chung DC: In vivo detection of experimental optic neuritis by pupillometry. Exp Eye Res 2012, 100:1–6. Shindler KS, Guan Y, Ventura E, Bennett J, Rostami A: Retinal ganglion cell loss induced by acute optic neuritis in a relapsing model of multiple sclerosis. MultScler 2006, 12:526–532. Shindler KS, Ventura E, Dutt M, Rostami A: Inflammatory demyelination induces axonal injury and retinal ganglion cell apoptosis in experimental optic neuritis. Exp Eye Res 2008, 87:208–213. Korn T: Pathophysiology of multiple sclerosis. J Neurol 2008,255(Suppl 6):2–6. Steel DH, Waldock A: Measurement of the retinal nerve fibre layer with scanning laser polarimetry in patients with previous demyelinating optic neuritis. J NeurolNeurosurg Psychiatry 1998, 64:505–509. Gramlich OW, Joachim SC, Gottschling PF, Laspas P, Cuny CS, Pfeiffer N, Grus FH: Ophthalmopathology in rats with MBP-induced experimental autoimmune encephalomyelitis. Graefes Arch ClinExpOphthalmol 2011, 249:1009–1020. Beck RW, Cleary PA, Anderson MM Jr, Keltner JL, Shults WT, Kaufman DI, Buckley EG, Corbett JJ, Kupersmith MJ, Miller NR, Savino PJ, Guy JR, Trobe JD, McCrary JA III, Smith CH, Chrousos GA, Thompson HS, Katz BJ, Brodsky MC, Goodwin JA, Atwell CW, the Optic Neuritis Study Group: A randomized, controlled trial of corticosteroids in the treatment of acute optic neuritis. The Optic Neuritis Study Group. N Engl J Med 1992, 326:581–588. Trip SA, Schlottmann PG, Jones SJ, Altmann DR, Garway-Heath DF, Thompson AJ, Plant GT, Miller DH: Retinal nerve fiber layer axonal loss and visual dysfunction in optic neuritis. Ann Neurol 2005, 58:383–391. Costello F, Coupland S, Hodge W, Lorello GR, Koroluk J, Pan YI, Freedman MS, Zackon DH, Kardon RH: Quantifying axonal loss after optic neuritis with optical coherence tomography. Ann Neurol 2006, 59:963–969. Fisher JB, Jacobs DA, Markowitz CE, Galetta SL, Volpe NJ, Nano-Schiavi ML, Baier ML, Frohman EM, Winslow H, Frohman TC, Calabresi PA, Maguire MG, Cutter GR, Balcer LJ: Relation of visual function to retinal nerve fiber layer thickness in multiple sclerosis. Ophthalmology 2006, 113:324–332. Matsunaga Y, Kezuka T, An X, Fujita K, Matsuyama N, Matsuda R, Usui Y, Yamakawa N, Kuroda M, Goto H: Visual functional and histopathological correlation in experimental autoimmune optic neuritis. Invest Ophthalmol Vis Sci 2012, 53:6964–6971. Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR: Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab Invest 2010, 90:774–786. Quinn TA, Dutt M, Shindler KS: Optic neuritis and retinal ganglion cell loss in a chronic murine model of multiple sclerosis. Front Neurol 2011, 2:50. Guy J: Optic nerve degeneration in experimental autoimmune encephalomyelitis. Ophthalmic Res 2008, 40:212–216. Zhang R, Tian A, Shi X, Yu H, Chen L: Downregulation of IL-17 and IFN-gamma in the optic nerve by beta-elemene in experimental autoimmune encephalomyelitis. IntImmunopharmacol 2010, 10:738–743. Tian AY, Zhang RW, Shi XG, Yu HM: Alteration of T helper cell subsets in the optic nerve of experimental autoimmune encephalomyelitis. Int J Mol Med 2010, 25:869–874. Herges K, de Jong BA, Kolkowitz I, Dunn C, Mandelbaum G, Ko RM, Maini A, Han MH, Killestein J, Polman C, Goodyear AL, Dunn J, Steinman L, Axtell RC: Protective effect of an elastase inhibitor in a neuromyelitisoptica-like disease driven by a peptide of myelin oligodendroglial glycoprotein. MultScler 2012, 18:398–408. Vickers JC, Costa M: The neurofilament triplet is present in distinct subpopulations of neurons in the central nervous system of the guinea-pig. Neuroscience 1992, 49:73–100. Fairless R, Williams SK, Hoffmann DB, Stojic A, Hochmeister S, Schmitz F, Storch MK, Diem R: Preclinical retinal neurodegeneration in a model of multiple sclerosis. J Neurosci 2012, 32:5585–5597. Vidal L, Diaz F, Villena A, Moreno M, Campos JG, Perez de Vargas I: Reaction of Muller cells in an experimental rat model of increased intraocular pressure following timolol, latanoprost and brimonidine. Brain Res Bull 2010, 82:18–24. Adamus G, Brown L, Andrew S, Meza-Romero R, Burrows GG, Vandenbark AA: Neuroprotective effects of recombinant T-cell receptor ligand in autoimmune optic neuritis in HLA-DR2 mice. Invest Ophthalmol Vis Sci 2012, 53:406–412. Gran B, Zhang GX, Yu S, Li J, Chen XH, Ventura ES, Kamoun M, Rostami A: IL-12p35-deficient mice are susceptible to experimental autoimmune encephalomyelitis: evidence for redundancy in the IL-12 system in the induction of central nervous system autoimmune demyelination. J Immunol 2002, 169:7104–7110. Zargari M, Allameh A, Sanati MH, Tiraihi T, Lavasani S, Emadyan O: Relationship between the clinical scoring and demyelination in central nervous system with total antioxidant capacity of plasma during experimental autoimmune encephalomyelitis development in mice. NeurosciLett 2007, 412:24–28. Kurihara T, Ozawa Y, Shinoda K, Nagai N, Inoue M, Oike Y, Tsubota K, Ishida S, Okano H: Neuroprotective effects of angiotensin II type 1 receptor (AT1R) blocker, telmisartan, via modulating AT1R and AT2R signaling in retinal inflammation. Invest Ophthalmol Vis Sci 2006, 47:5545–5552. Peterson WM, Wang Q, Tzekova R, Wiegand SJ: Ciliaryneurotrophic factor and stress stimuli activate the Jak-STAT pathway in retinal neurons and glia. J Neurosci 2000, 20:4081–4090. Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S: Microglia-specific localisation of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 1998, 57:1–9. Howlett DR, Bate ST, Collier S, Lawman A, Chapman T, Ashmeade T, Marshall I, Anderson PJ, Philpott KL, Richardson JC, Hille CJ: Characterisation of amyloid-induced inflammatory responses in the rat retina. Exp Brain Res 2011, 214:185–197. Voss EV, Skuljec J, Gudi V, Skripuletz T, Pul R, Trebst C, Stangel M: Characterisation of microglia during de- and remyelination: can they create a repair promoting environment? Neurobiol Dis 2012, 45:519–528. Neumann H, Kotter MR, Franklin RJ: Debris clearance by microglia: an essential link between degeneration and regeneration. Brain 2009, 132:288–295. Kotter MR, Li WW, Zhao C, Franklin RJ: Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 2006, 26:328–332. Compston A, Coles A: Multiple sclerosis. Lancet 2002, 359:1221–1231. Das A, Guyton MK, Smith A, Wallace G, McDowell ML, Matzelle DD, Ray SK, Banik NL: Calpain inhibitor attenuated optic nerve damage in acute optic neuritis in rats. J Neurochem 2013, 124:133–146. Quigley HA, Nickells RW, Kerrigan LA, Pease ME, Thibault DJ, Zack DJ: Retinal ganglion cell death in experimental glaucoma and after axotomy occurs by apoptosis. Invest Ophthalmol Vis Sci 1995, 36:774–786. Barron KD, Dentinger MP, Krohel G, Easton SK, Mankes R: Qualitative and quantitative ultrastructural observations on retinal ganglion cell layer of rat after intraorbital optic nerve crush. J Neurocytol 1986, 15:345–362. You Y, Gupta VK, Graham SL, Klistorner A: Anterograde degeneration along the visual pathway after optic nerve injury. PLoS One 2012, 7:e52061. Li Y, Semaan SJ, Schlamp CL, Nickells RW: Dominant inheritance of retinal ganglion cell resistance to optic nerve crush in mice. BMC Neurosci 2007, 8:19. Chen J, Qian H, Horai R, Chan CC, Caspi RR: Use of optical coherence tomography and electroretinography to evaluate retinal pathology in a mouse model of autoimmune uveitis. PLoS One 2013, 8:e63904. Jian Y, Zawadzki RJ, Sarunic MV: Adaptive optics optical coherence tomography for in vivo mouse retinal imaging. J Biomed Opt 2013, 18:56007. Kocaoglu OP, Uhlhorn SR, Hernandez E, Juarez RA, Will R, Parel JM, Manns F: Simultaneous fundus imaging and optical coherence tomography of the mouse retina. Invest Ophthalmol Vis Sci 2007, 48:1283–1289. Guan Y, Shindler KS, Tabuena P, Rostami AM: Retinal ganglion cell damage induced by spontaneous autoimmune optic neuritis in MOG-specific TCR transgenic mice. J Neuroimmunol 2006, 178:40–48. Tuo J, Grob S, Zhang K, Chan CC: Genetics of immunological and inflammatory components in age-related macular degeneration. OculImmunolInflamm 2012, 20:27–36. McVicar CM, Hamilton R, Colhoun LM, Gardiner TA, Brines M, Cerami A, Stitt AW: Intervention with an erythropoietin-derived peptide protects against neuroglial and vascular degeneration during diabetic retinopathy. Diabetes 2011, 60:2995–3005. Bai Y, Shi Z, Zhuo Y, Liu J, Malakhov A, Ko E, Burgess K, Schaefer H, Esteban PF, Tessarollo L, Saragovi HU: In glaucoma the upregulated truncated TrkC.T1 receptor isoform in glia causes increased TNF-alpha production, leading to retinal ganglion cell death. Invest Ophthalmol Vis Sci 2010, 51:6639–6651. Yong VW, Marks S: The interplay between the immune and central nervous systems in neuronal injury. Neurology 2010,74(Suppl 1):S9-S16. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, Linington C, Schmidbauer M, Lassmann H: Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 2000, 157:267–276. Ma W, Zhao L, Fontainhas AM, Fariss RN, Wong WT: Microglia in the mouse retina alter the structure and function of retinal pigmented epithelial cells: a potential cellular interaction relevant to AMD. PLoS One 2009, 4:e7945. Schuetz E, Thanos S: Microglia-targeted pharmacotherapy in retinal neurodegenerative diseases. Curr Drug Targets 2004, 5:619–627. Langmann T: Microglia activation in retinal degeneration. J LeukocBiol 2007, 81:1345–1351. Kermode AG, Thompson AJ, Tofts P, MacManus DG, Kendall BE, Kingsley DP, Moseley IF, Rudge P, McDonald WI: Breakdown of the blood–brain barrier precedes symptoms and other MRI signs of new lesions in multiple sclerosis. Pathogenetic and clinical implications. Brain 1990,113(Pt 5):1477–1489. Claudio L, Kress Y, Norton WT, Brosnan CF: Increased vesicular transport and decreased mitochondrial content in blood–brain barrier endothelial cells during experimental autoimmune encephalomyelitis. Am J Pathol 1989, 135:1157–1168. Xu H, Forrester JV, Liversidge J, Crane IJ: Leukocyte trafficking in experimental autoimmune uveitis: breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules. Invest Ophthalmol Vis Sci 2003, 44:226–234. Motulsky E, Koch P, Janssens S, Lienart M, Vanbellinghen AM, Bolaky N, Chan CC, Caspers L, Martin-Martinez MD, Xu H, Delporte C, Willermain F: Aquaporin expression in blood-retinal barrier cells during experimental autoimmune uveitis. Mol Vis 2010, 16:602–610. Cruz-Guilloty F, Saeed AM, Echegaray JJ, Duffort S, Ballmick A, Tan Y, Betancourt M, Viteri E, Ramkhellawan GC, Ewald E, Feuer W, Huang D, Wen R, Hong L, Wang H, Laird JM, Sene A, Apte RS, Salomon RG, Hollyfield JG, Perez VL: Infiltration of proinflammatory m1 macrophages into the outer retina precedes damage in a mouse model of age-related macular degeneration. Int J Inflam 2013, 2013:503725.