Inflammatory Cell Migration into the Central Nervous System: A Few New Twists on an Old Tale

Brain Pathology - Tập 17 Số 2 - Trang 243-250 - 2007
Shumei Man1, Eroboghene E. Ubogu2,1, Richard M. Ransohoff1
1Neuroinflammation Research Center, Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio.
2Department of Neurology, Case Western Reserve University School of Medicine, Cleveland, Ohio

Tóm tắt

Understanding the mechanisms of leukocyte trafficking into the brain might provide insights into how to modulate pathologic immune responses or enhance host protective mechanisms in neuroinflammatory diseases such as multiple sclerosis. This review summarized our knowledge about the sites for leukocyte entry into the central nervous system, highlighting the routes from blood into the perivascular space and brain parenchyma through the blood–brain barrier. We further discussed the multistep paradigm of leukocyte–endothelial interactions at the blood–brain barrier, focusing on the adhesion molecules and chemokines involved in leukocyte transmigration. Luminal chemokines, which are immobilized on endothelial surfaces, initiate leukocyte integrin clustering and conformational change, leading to leukocyte arrest. Some leukocytes undergo post‐arrest locomotion across the endothelial surface until interendothelial junctions are identified. Leukocytes then extend protrusions through the interendothelial junctions, in search of abluminal chemokines, which will serve as guidance cues for transmigration. Extravasating cells first accumulate in the perivascular space between the endothelial basement membrane and the basement membrane of the glia limitans. Matrix metalloproteases may be involved in leukocyte transverse across glia limitans into the brain parenchyma. The adhesion molecules and chemokine receptors provide attractive targets for neuroinflammatory diseases because of their important role in mediating central nervous system inflammation.

Từ khóa


Tài liệu tham khảo

10.1084/jem.20051342

10.1038/sj.mn.7800195

10.1002/1521-4141(200208)32:8<2133::AID-IMMU2133>3.0.CO;2-W

10.1016/j.imbio.2004.04.001

10.1016/S0165-5728(99)00266-0

10.1097/01.wco.0000236612.66839.a2

10.1182/blood-2002-10-3309

10.1074/jbc.M905251199

10.1016/j.it.2006.11.007

10.1038/nsb779

10.1182/blood-2004-03-1184

10.1097/00005072-199655100-00006

10.1016/0092-8674(91)90279-8

10.1126/science.272.5258.60

10.1126/science.279.5349.381

10.1038/23495

10.1093/brain/123.6.1092

10.1161/01.RES.87.12.1141

10.1056/NEJMra052723

10.1038/ni1103

10.1038/88710

10.1242/jcs.111.4.443

Constantin G, 2004, Visualization and analysis of adhesive events in brain microvessels by using intravital microscopy, Methods Mol Biol, 239, 189

10.1073/pnas.0402455101

10.1084/jem.190.9.1351

Dowbenko D, 1993, Structure and chromosomal localization of the murine gene encoding GLYCAM 1. A mucin‐like endothelial ligand for L selectin, J Biol Chem, 268, 4525, 10.1016/S0021-9258(18)53641-3

10.1007/s00702-005-0409-y

10.1016/j.it.2005.07.004

10.1002/eji.200425327

10.1182/blood.V90.11.4459

10.1016/S0165-5728(97)00237-3

10.4049/jimmunol.175.2.1267

10.4049/jimmunol.165.6.3375

10.1016/j.it.2006.11.004

10.4049/jimmunol.159.6.2685

10.1038/84209

10.1038/19546

10.1016/S1074-7613(03)00350-9

Greenwood J, 1995, Lymphocyte adhesion and transendothelial migration in the central nervous system: the role of LFA‐1, ICAM‐1, VLA‐4 and VCAM‐1, Immunology, 86, 408

10.1002/(SICI)1098-1136(199701)19:1<13::AID-GLIA2>3.0.CO;2-B

10.1074/jbc.M100630200

10.1016/0006-8993(93)91064-Y

10.1002/ana.20875

10.1056/NEJMoa052643

10.1038/ni950

10.1074/jbc.M310717200

10.4049/jimmunol.169.2.1000

10.4049/jimmunol.176.10.6225

10.1172/JCI2688

10.1073/pnas.1433000100

10.1016/S0021-9258(17)31750-7

10.1002/1521-4141(200212)32:12<3598::AID-IMMU3598>3.0.CO;2-6

10.1126/science.271.5251.981

10.1074/jbc.273.46.30306

10.1034/j.1600-065X.2002.18604.x

10.1038/377075a0

10.1074/jbc.M100600200

10.1038/ni1275

10.1016/j.jneuroim.2003.10.056

10.1074/jbc.M102373200

10.1074/jbc.M006991200

10.4049/jimmunol.177.11.8053

10.1074/jbc.270.19.11025

10.1083/jcb.118.2.445

10.1074/jbc.M111999200

10.1002/j.1460-2075.1988.tb03303.x

10.1016/j.immuni.2004.07.012

10.1038/ni755

10.1093/jnen/62.6.593

10.1074/jbc.M003189200

10.1016/0166-2236(88)90110-5

10.1038/nrn1032

10.1002/(SICI)1521-4141(199803)28:03<961::AID-IMMU961>3.0.CO;2-4

10.4049/jimmunol.168.4.1940

10.4049/jimmunol.174.9.5805

10.1056/NEJMoa044397

10.1038/nn1005-1275

10.1182/blood-2006-11-059600

10.1038/nri1130

10.1016/j.coi.2006.09.005

10.1172/JCI14273

10.1056/NEJMe068002

10.1056/NEJMoa044396

10.4049/jimmunol.172.6.3830

10.1038/ni1051

10.1182/blood-2006-07-032995

10.1083/jcb.200301133

10.1038/nature04606

10.1242/jcs.00606

10.1016/0092-8674(94)90337-9

10.1002/path.1400

10.1016/0092-8674(88)90434-5

Steffen BJ, 1994, Evidence for involvement of ICAM‐1 and VCAM‐1 in lymphocyte interaction with endothelium in experimental autoimmune encephalomyelitis in the central nervous system in the SJL/J mouse, Am J Pathol, 145, 189

10.1084/jem.191.1.61

10.1002/ana.20858

10.1034/j.1600-065X.2002.18613.x

10.4049/jimmunol.169.2.1007

10.1002/bies.950180208

10.4049/jimmunol.177.10.7242

10.1186/1742-2094-2-24

10.1007/s10571-004-1380-0

10.1016/j.jneuroim.2006.06.004

10.1172/JCI12440

Vorbrodt AW, 2004, Molecular anatomy of interendothelial junctions in human blood‐brain barrier microvessels, Folia Histochem Cytobiol, 42, 67

10.1083/jcb.134.4.1063

10.1073/pnas.93.20.10939

10.1084/jem.20060565

10.1016/j.smim.2003.08.007

10.1007/s004410051287

10.1083/jcb.200103048

10.1126/science.1064535

10.1212/01.wnl.0000244420.68037.86

10.1016/S1074-7613(00)80165-X

10.1038/nn980