Inflammasomes: guardians of cytosolic sanctity

Immunological Reviews - Tập 227 Số 1 - Trang 95-105 - 2009
Mohamed Lamkanfi1, Vishva M. Dixit2
1Department of Physiological Chemistry, Genentech, South San Francisco, CA 94080, USA
2Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA

Tóm tắt

Summary:  The innate immune system is critical in recognizing bacterial and viral infections to evoke a proper immune response. Certain members of the intracellular nucleotide‐binding and oligomerization domain (NOD)‐like receptor (NLR) family detect microbial components in the cytosol and trigger the assembly of large caspase‐1‐activating complexes termed inflammasomes. Autoproteolytic maturation of caspase‐1 zymogens within these inflammasomes leads to maturation and secretion of the pro‐inflammatory cytokines interleukin‐1β (IL‐1β) and IL‐18. The NLR proteins ICE protease‐activating factor (IPAF), NALP1b (NACHT domain‐, leucine‐rich repeat‐, and PYD‐containing protein 1b), and cryopyrin/NALP3 assemble caspase‐1‐activating inflammasomes in a stimulus‐dependent manner. Bacterial flagellin is sensed by IPAF, whereas mouse NALP1b detects anthrax lethal toxin. Cryopyrin/NALP3 mediates caspase‐1 activation in response to a wide variety of microbial components and in response to crystalline substances such as the endogenous danger signal uric acid. Genetic variations in Nalp1 and cryopyrin/Nalp3 are associated with autoinflammatory disorders and increased susceptibility to microbial infection. Further understanding of inflammasomes and their role in innate immunity should provide new insights into the mechanisms of host defense and the pathogenesis of autoimmune diseases.

Từ khóa


Tài liệu tham khảo

10.1182/blood.V87.6.2095.bloodjournal8762095

10.1111/j.1749-6632.1998.tb08307.x

10.3109/08830189809043005

10.1042/bj20020707

10.1128/MCB.9.3.959

10.1042/bj3300975

10.1006/cyto.1998.0478

10.1042/bj3240653

10.1038/386619a0

Yoshimoto T, 1998, IL‐12 up‐regulates IL‐18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL‐18 for IFN‐gamma production, J Immunol, 161, 3400, 10.4049/jimmunol.161.7.3400

10.1038/378088a0

Dao T, 1998, IL‐18 augments perforin‐dependent cytotoxicity of liver NK‐T cells, J Immunol, 161, 2217, 10.4049/jimmunol.161.5.2217

Olee T, 1999, IL‐18 is produced by articular chondrocytes and induces proinflammatory and catabolic responses, J Immunol, 162, 1096, 10.4049/jimmunol.162.2.1096

10.1172/JCI1333

10.1074/jbc.272.41.25737

10.1074/jbc.271.8.3967

Hoshino K, 1999, Cutting edge: generation of IL‐18 receptor‐deficient mice: evidence for IL‐1 receptor‐related protein as an essential IL‐18 binding receptor, J Immunol, 162, 5041, 10.4049/jimmunol.162.9.5041

Barbulescu K, 1998, IL‐12 and IL‐18 differentially regulate the transcriptional activity of the human IFN‐gamma promoter in primary CD4+ T lymphocytes, J Immunol, 160, 3642, 10.4049/jimmunol.160.8.3642

10.1016/S1074-7613(00)80378-7

10.4049/jimmunol.168.3.1146

10.4049/jimmunol.165.3.1307

10.1126/science.1373520

10.1016/0092-8674(95)90490-5

10.1126/science.7535475

10.1016/j.immuni.2005.09.015

10.1038/sj.cdd.4400989

10.1038/sj.cdd.4401160

10.1016/S1097-2765(03)00051-0

10.1073/pnas.96.20.10964

10.1016/S1097-2765(02)00599-3

10.1038/nature02664

10.1038/ni1346

10.1038/ni1344

10.1038/ng1724

10.1016/j.cub.2004.10.027

10.1074/jbc.M607594200

10.1038/nature04515

10.1084/jem.20050977

10.1146/annurev.phyto.45.062806.094427

10.1038/sj.cdd.4401850

10.1016/S1074-7613(04)00046-9

10.1074/jbc.M604933200

10.1038/ni1305

10.1002/eji.200737532

10.1073/pnas.0712183105

10.1084/jem.20071239

10.1371/journal.ppat.0030111

10.4049/jimmunol.178.12.8022

10.1111/j.1462-5822.2006.00839.x

10.1371/journal.ppat.0020018

10.1084/jem.20051659

10.1038/ng1065

10.1016/S0960-9822(02)01359-3

10.1111/j.1462-5822.2007.00963.x

10.1128/iai.45.3.761-767.1984

10.1046/j.1365-2672.1999.00890.x

10.1016/S0021-9258(17)38364-3

10.1046/j.1365-2958.1998.00953.x

10.1016/j.molcel.2007.01.032

10.1073/pnas.0707370105

10.1128/IAI.67.6.3055-3060.1999

10.1074/jbc.M705687200

10.1016/j.cell.2004.05.004

10.1111/j.1365-2567.2004.01976.x

10.1074/jbc.M401178200

10.1016/j.jaci.2006.12.649

10.1016/S0140-6736(04)17401-1

10.1016/j.immuni.2006.02.004

10.1016/j.immuni.2007.03.008

10.1038/nature06664

10.1074/jbc.M006781200

10.1074/jbc.M610351200

10.1038/sj.emboj.7601378

10.1016/j.febslet.2006.12.056

10.1038/nature04516

10.1126/science.1156995

10.1038/ni.1631

10.1073/pnas.0803933105

10.1038/nature06939

10.1002/eji.200838549

10.1111/j.1365-2567.2007.02774.x

10.1038/ni712

10.1126/science.1135299

10.1038/nature04875

10.1016/S1074-7613(00)80596-8

10.1046/j.1365-2567.2003.01581.x

10.1073/pnas.0504271103

10.1084/jem.20062665

10.1146/annurev.genet.37.110801.142628

10.1038/35081161

10.1016/S0968-0004(98)01311-5

10.1016/S0092-8674(02)00661-X

10.1105/tpc.6.7.927

10.1016/S0092-8674(03)00036-9

10.1016/S0092-8674(03)00040-0

10.1038/ni.1633

10.1038/370270a0

10.1038/376037a0

10.1021/tx970131m

10.2307/3433171

10.1038/sj.cdd.4402195

10.1074/jbc.M610762200

10.1002/j.1460-2075.1995.tb07149.x

10.1016/S0021-9258(17)36591-2

10.1152/physrev.00015.2002

10.1016/S0014-2999(99)00350-7

10.1152/ajpcell.1999.277.4.C755

10.1152/ajpcell.1999.277.4.C766

10.1152/ajpcell.1998.275.6.C1538

10.4049/jimmunol.175.11.7623

10.1074/jbc.271.47.29830

10.4049/jimmunol.176.7.3877

10.1146/annurev.cellbio.19.111301.140655

10.1038/sj.cdd.4401264