Inferring individual fate from aquatic acoustic telemetry data

Methods in Ecology and Evolution - Tập 11 Số 10 - Trang 1186-1198 - 2020
David Villegas‐Ríos1,2, Carla Freitas3,4, Even Moland5,3, Susanna Huneide Thorbjørnsen5,3, Esben Moland Olsen5,3
1Department of Ecology and Marine Resources Instituto Mediterráneo de Estudios Avanzados (CSIC‐UiB) Esporles Spain
2Department of Ecology and Marine Resources, Instituto de Investigaciones Marinas (CSIC), Vigo, Spain
3Institute of Marine Research, His, Norway
4Marine and Environmental Sciences Center, MARE, Funchal, Portugal
5Department of Natural Sciences, Centre for Coastal Research (CCR), University of Agder, Kristiansand, Norway

Tóm tắt

AbstractAcoustic telemetry has become a popular means of obtaining individual behavioural data from a wide array of species in marine and freshwater systems. Fate information is crucial to understand important aspects of population dynamics such as mortality, predation or dispersal rates.Here we present a method to infer individual fate from acoustic telemetry arrays of receivers with overlapping detection ranges. Our method depends exclusively on information on animal movements and the characteristics and configuration of the telemetry equipment. By answering a limited number of simple questions, our method identifies six different fates: tagging mortality, natural mortality, fishing mortality, predation, dispersal and survival.Applying the method to a cod telemetry dataset, we were able to determine the fate of 97% of the individuals. We validate the results using several external sources of information, such as recaptures from fishers and control fish with known fate.The method is readily applicable to a wide array of species with minimal adjustments, expanding the range of hypotheses that can be tested using telemetry data.

Từ khóa


Tài liệu tham khảo

10.1016/j.ecss.2009.09.001

Afonso P., 2008, Reproduction and spawning habitat of white trevally, Pseudocaranx dentex, in the Azores, central north Atlantic, Scientia Marina, 72, 373

10.1139/F09-076

10.1038/s41598-017-14278-z

10.1111/mec.15010

Bennett J. P., 2006, Using acoustic telemetry to estimate natural and fishing mortality of common snook in Sarasota Bay

10.3354/meps11579

Bjørge A., 1995, Developments in marine biology, 211

10.1080/02755947.2015.1009660

Chudzinska M., 2009, Diving behaviour of harbour seals (Phoca vitulina) from the Kattegat

10.1016/j.tree.2004.04.003

10.1002/eap.1533

10.2989/1814232X.2013.769911

10.1016/j.fishres.2012.05.007

10.1139/cjfas-2017-0522

10.1016/j.fishres.2018.04.007

10.1111/1365-2656.12458

10.1002/ece3.1496

Gulland J. A., 1988, Fish population dynamics: The implications for management

10.1111/2041-210X.12726

10.1186/s40317-017-0122-2

10.1071/MF05091

10.1139/f02-036

10.1577/1548-8659(2001)130<0557:UOTMTE>2.0.CO;2

10.1126/science.1255642

10.1111/j.1095-8649.2008.01947.x

10.1007/s00338-015-1387-7

10.1111/jfb.14156

10.1111/2041-210X.12996

10.1007/s10530-016-1071-z

10.1093/icesjms/fsy209

10.1371/journal.pone.0101809

10.3354/meps08410

10.1371/journal.pone.0077125

10.1111/mec.14393

10.1002/ece3.244

10.1007/s10682-010-9427-9

10.1007/s10750-012-1063-7

Quinn T. J., 1999, Quantitative fish dynamics, 10.1093/oso/9780195076318.001.0001

10.1093/icb/icv088

10.1139/f01-191

10.1080/10641262.2013.796813

10.1007/s00227-005-1573-1

10.1080/00028487.2013.790844

10.1016/j.seares.2013.02.009

10.1111/faf.12188

10.1016/j.anbehav.2016.12.002

10.1126/science.1114616

10.1016/j.fishres.2016.06.003

10.1111/j.1600-0633.2006.00154.x

10.1577/M03-120.1