Inducing a Nanotwinned Grain Structure within the TiO2 Nanotubes Provides Enhanced Electron Transport and DSSC Efficiencies >10%

Advanced Energy Materials - Tập 8 Số 33 - 2018
Seulgi So1,2, Imgon Hwang2, JeongEun Yoo2, Shiva Mohajernia2, Mirza Mačković3, Erdmann Spiecker3, Gihoon Cha2, Anca Mazare2, Patrik Schmuki4,2
1Department of Chemistry, University of California, Irvine, CA 92697, USA
2Department of Materials Science and Engineering, WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
3Department of Materials Science and Engineering, Institute of Micro- and Nanostructure Research and Center for Nanoanalysis and Electron Microscopy, Cauerstr 6, D-91058 Erlangen, Germany
4Chemistry Department, Faculty of Sciences, King Abdulaziz University, 80203 Jeddah, Saudi Arabia

Tóm tắt

AbstractTitania is one of the key materials used in 1D, 2D, and 3D nanostructures as electron transport media in energy conversion devices. In the present study, it is shown that the electronic properties of TiO2 nanotubes can be drastically improved by inducing a nanotwinned grain structure in the nanotube wall. This structure can be exclusively induced for “single‐walled” nanotubes with a high‐temperature treatment in pure oxygen atmospheres. Nanotubes with a twinned grain structure within the tube wall show a strongly enhanced conductivity and photogenerated charge transport compared to classic nanotubes. This remarkable improvement is exemplified in the electronic properties by using nanotwinned TiO2 nanotubes in dye‐sensitized solar cells where a significant increase in efficiency of up to 10.2% is achieved.

Từ khóa


Tài liệu tham khảo

10.1038/354056a0

10.1103/RevModPhys.79.677

10.1021/cr500061m

10.1002/anie.201001374

10.1038/353737a0

10.1038/nchem.1861

10.1021/jp401106u

10.1038/am.2013.74

10.1021/ja5015635

10.1038/ncomms4968

10.1039/c3ee42167h

10.1021/nl201766h

10.1038/nnano.2010.196

10.1063/1.4826640

10.1002/anie.201303849

10.1016/j.cplett.2010.06.022

10.1007/s10853-009-3703-5

10.1002/pssr.201308221

10.1016/j.solmat.2011.11.004

10.1039/C4EE03729D

10.1002/chem.201500730

10.1039/c3cc38793c

10.1039/C3NR06194A

10.1038/nnano.2008.359

10.1038/nature07570

10.1002/adma.200306648

10.1038/ncomms3278

10.1039/C5CP00564G

10.1002/adma.200801189

10.1039/B917886D

10.1021/jp909786k

10.1016/j.elecom.2016.08.010

10.1016/j.electacta.2017.02.094

10.1021/cr0500535

10.1016/S0167-5729(02)00100-0

10.1021/ja3012676

10.1039/c0ee00604a

10.2138/am-1998-9-1016

10.1126/science.281.5379.969

10.1016/S0016-7037(99)00037-X

10.1021/jp412351g

10.1021/jp105780v