Indocyanine Green Loaded Reduced Graphene Oxide for In Vivo Photoacoustic/Fluorescence Dual-Modality Tumor Imaging
Tóm tắt
Multimodality imaging based on multifunctional nanocomposites holds great promise to fundamentally augment the capability of biomedical imaging. Specifically, photoacoustic and fluorescence dual-modality imaging is gaining much interest because of their non-invasiveness and the complementary nature of the two modalities in terms of imaging resolution, depth, sensitivity, and speed. Herein, using a green and facile method, we synthesize indocyanine green (ICG) loaded, polyethylene glycol (PEG)ylated, reduced nano-graphene oxide nanocomposite (rNGO-PEG/ICG) as a new type of fluorescence and photoacoustic dual-modality imaging contrast. The nanocomposite is shown to have minimal toxicity and excellent photoacoustic/fluorescence signals both in vitro and in vivo. Compared with free ICG, the nanocomposite is demonstrated to possess greater stability, longer blood circulation time, and superior passive tumor targeting capability. In vivo study shows that the circulation time of rNGO-PEG/ICG in the mouse body can sustain up to 6 h upon intravenous injection; while after 1 day, no obvious accumulation of rNGO-PEG/ICG is found in any major organs except the tumor regions. The demonstrated high fluorescence/photoacoustic dual contrasts, together with its low toxicity and excellent circulation life time, suggest that the synthesized rNGO-PEG/ICG can be a promising candidate for further translational studies on both the early diagnosis and image-guided therapy/surgery of cancer.
Tài liệu tham khảo
Shinoda J, Yano H, Yoshimura S, Okumura A, Kaku Y, Iwama T, Sakai N (2003) Fluorescence-guided resection of glioblastoma multiforme by using high-dose fluorescein sodium: technical note. J Neurosurg 99:597–603
Gao X, Cui Y, Levenson RM, Chung LW, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976
Liu J, Yu M, Zhou C, Yang S, Ning X, Zheng J (2013) Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J Am Chem Soc 135:4978–4981
Van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, de Jong JS, Arts HJ, van der Zee AG, Bart J, Low PS, Ntziachristos V (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315–1319
Troyan SL, Kianzad V, Gibbs-Strauss SL, Gioux S, Matsui A, Oketokoun R, Ngo L, Khamene A, Azar F, Frangioni JV (2009) The FLARE™ intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol 16:2943–2952
Nguyen QT, Tsien RY (2013) Fluorescence-guided surgery with live molecular navigation—a new cutting edge. Nat Rev Cancer 13:653–662
Li K, Liu B (2014) Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem Soc Rev 43:6570–6597
Xi L, Zhou G, Gao N, Yang L, Gonzalo DA, Hughes SJ, Jiang H (2014) Photoacoustic and fluorescence image-guided surgery using a multifunctional targeted nanoprobe. Ann Surg Oncol 21:1602–1609
Bai X, Gong X, Hau W, Lin R, Zheng J, Liu C, Zeng C, Zou X, Zheng H, Song L (2014) Intravascular optical-resolution photoacoustic tomography with a 1.1 mm diameter catheter. PLoS One 9:e92463
Song KH, Wang LV (2007) Deep reflection-mode photoacoustic imaging of biological tissue. J Biomed Opt 12:060503-1–060503-3
Weissleder R (2006) Molecular imaging in cancer. Science 312:1168–1171
Wang LV, Hu S (2012) Photoacoustic tomography: in vivo imaging from organelles to organs. Science 335:1458–1462
Benson RC, Kues HA (1978) Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol 23:159
Desmettre T, Devoisselle JM, Mordon S (2000) Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol 45:15–27
Xu G, Piao D, Musgrove CH, Bunting CF, Dehghani H (2008) Trans-rectal ultrasound-coupled near-infrared optical tomography of the prostate, part I: simulation. Opt Express 16:17484–17504
Manchanda R, Fernandez-Fernandez A, Nagesetti A, McGoron AJ (2010) Preparation and characterization of a polymeric (PLGA) nanoparticulate drug delivery system with simultaneous incorporation of chemotherapeutic and thermo-optical agents. Colloid Surface B 75:260–267
Rudin M (2009) Noninvasive structural, functional, and molecular imaging in drug development. Curr Opin Chem Biol 13:360–371
Wang H, Liu C, Gong X, Hu D, Lin R, Sheng Z, Zheng C, Yan M, Chen J, Cai L, Song L (2014) In vivo photoacoustic molecular imaging of breast carcinoma with folate receptor-targeted indocyanine green nanoprobes. Nanoscale 6:14270–14279
Wang YW, Fu YY, Peng QL, Guo SS, Liu G, Li J, Yang HH, Chen GN (2013) Dye-enhanced graphene oxide for photothermal therapy and photoacoustic imaging. J Mater Chem B 1:5762–5767
Chen YW, Chen PJ, Hu SH, Chen IW, Chen SY (2014) NIR-triggered synergic photo-chemothermal therapy delivered by reduced graphene oxide/carbon/mesoporous silica nanocookies. Adv Funct Mater 24:451–459
Kim H, Lee D, Kim J, Kim TI, Kim WJ (2013) Photothermally triggered cytosolic drug delivery via endosome disruption using a functionalized reduced graphene oxide. ACS Nano 7:6735–6746
Su Y, Du J, Sun D, Liu C, Cheng H (2013) Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors. Nano Res 6:842–852
Chen J, Liu H, Zhao C, Qin G, Xi G, Li T, Wang X, Chen T (2014) One-step reduction and PEGylation of graphene oxide for photothermally controlled drug delivery. Biomaterials 35:4986–4995
Gonçalves G, Vila M, Portolés MT, Vallet-Regi M, Gracio J, Marques PA (2013) Nano-graphene oxide: a potential multifunctional platform for cancer therapy. Adv Healthc Mater 2:1072–1090
Miao W, Shim G, Kim G, Lee S, Lee HJ, Kim YB, Byun Y, Oh YK (2015) Image-guided synergistic photothermal therapy using photoresponsive imaging agent-loaded graphene-based nanosheets. J Control Release 211:28–36
Liu Z, Robinson JT, Sun X, Dai H (2008) PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J Am Chem Soc 130:10876–10877
Zheng XT, Li CM (2012) Restoring basal planes of graphene oxides for highly efficient loading and delivery of β-lapachone. Mol Pharmaceut 9:615–621
Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X, Huang R (2013) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135:4799–4804
Robinson JT, Tabakman SM, Liang Y, Wang H, Casalongue HS, Vinh D, Dai H (2011) Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J Am Chem Soc 133:6825–6831
Yang K, Wan J, Zhang S, Tian B, Zhang Y, Liu Z (2012) The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials 33:2206–2214
Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992
Chen J, Wang X, Chen T (2014) Facile and green reduction of covalently PEGylated nanographene oxide via a “water-only” route for high-efficiency photothermal therapy. Nanoscale Res Lett 9:86
Guo Y, Sun X, Liu Y, Wang W, Qiu H, Gao J (2012) One pot preparation of reduced graphene oxide (RGO) or Au (Ag) nanoparticle-RGO hybrids using chitosan as a reducing and stabilizing agent and their use in methanol electrooxidation. Carbon 50:2513–2523
Kuila T, Bose S, Mishra AK, Khanra P, Kim NH, Lee JH (2012) Chemical functionalization of graphene and its applications. Prog Mater Sci 57:1061–1105
Akhavan O, Ghaderi E, Aghayee S, Fereydooni Y, Talebi A (2012) The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J Mater Chem 22:13773–13781
Sheng Z, Song L, Zheng J, Hu D, He M, Zheng M, Gao G, Gong P, Zhang P, Ma Y, Cai L (2013) Protein-assisted fabrication of nano-reduced graphene oxide for combined in vivo photoacoustic imaging and photothermal therapy. Biomaterials 34:5236–5243
Capdevielle P, Lavigne A, Sparfel D, Baranne-Lafont J, Cuong NK, Maumy M (1990) Mechanism of primary aliphatic amines oxidation to nitriles by the cuprouschloride-dioxygen-pyridine system. Tetrahedron Lett 31:3305–3308
Lai L, Chen L, Zhan D, Sun L, Liu J, Lim SH, Pohb CK, Shena Z, Lin J (2011) One-step synthesis of NH2-graphene from in situ graphene-oxide reduction and its improved electrochemical properties. Carbon 49:3250–3257
Zhou Y, Bao QL, Tang LAL, Zhong YL, Loh KP (2009) Hydrothermal dehydration for the “green” reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties. Chem Mater 21:2950–2956
Lee JH, Park G, Hong GH, Choi J, Choi HS (2012) Design considerations for targeted optical contrast agents. Quant Imaging Med Surg 2:266–273
Zha Z, Deng Z, Li Y, Li C, Wang J, Wang S, Qu E, Dai Z (2013) Biocompatible polypyrrole nanoparticles as a novel organic photoacoustic contrast agent for deep tissue imaging. Nanoscale 5(10):4462–4467
Kulkarni SA, Feng SS (2013) Effects of particle size and surface modification on cellular uptake and biodistribution of polymeric nanoparticles for drug delivery. Pharm Res 30(10):2512–2522