Tăng cường transferrin huyết tương, phân bố sắt trong cơ thể bị thay đổi và thiếu máu vi hồng cầu nhược sắc ở chuột thiếu ferrochelatase

Blood - Tập 109 - Trang 811-818 - 2007
Saïd Lyoumi1, Marie Abitbol2,3, Valérie Andrieu4, Dominique Henin5, Elodie Robert6, Caroline Schmitt1, Laurent Gouya1, Hubert de Verneuil6, Jean-Charles Deybach1, Xavier Montagutelli2,3, Carole Beaumont1, Hervé Puy1
1Institut National de la Santé et de la Recherche Médicale (INSERM) Unité (U) 773, Centre de Recherche Biomédicale Bichat Beaujon CRB3, Paris; Université Paris 7 Denis Diderot; and Centre Français des Porphyries, Hôpital Louis Mourier, Colombes, France
2Institut Pasteur, Unité de Génétique des Mammifères, Paris, France
3Assistance Publique–Hôpitaux de Paris (AP-HP), Hôpital Bichat, Paris, France
4Laboratoire d'Hématologie, Paris, France
5Laboratoire d'anatomo-pathologie, Paris, France
6INSERM E0217 and Université V Segalen Bordeaux 2, Bordeaux, France

Tóm tắt

Tóm tắtBệnh nhân bị thiếu hụt ferrochelatase (FECH), enzyme cuối cùng trong con đường tổng hợp heme, trải qua một loại nhạy cảm ánh sáng đau đớn gọi là protoporphyria erythropoietic (EPP), do sản xuất quá mức protoporphyrin IX (PPIX) bởi hồng cầu. Có những kết quả gây tranh cãi liên quan đến tình trạng huyết học và tình trạng sắt của bệnh nhân EPP. Chúng tôi đã khám phá sâu về các tham số này ở chuột đột biến Fechm1Pas thuộc 3 dòng gen khác nhau. Sự thiếu hụt FECH gây ra thiếu máu vi hồng cầu nhược sắc mà không có hồng cầu hình vòng, ít hoặc không có hiện tượng tan máu, và không có tăng sinh hồng cầu. Mức độ sắt huyết thanh, ferritin, mRNA hepcidin và Dcytb đều bình thường. Đột biến Fechm1Pas đồng hợp tử không liên quan đến tình trạng thiếu sắt mô mà cho thấy phân phối sắt rõ ràng từ các mô ngoại vi đến lách, với sự gia tăng gấp 2 đến 3 lần trong sự biểu hiện transferrin ở cả cấp độ mRNA và protein. Mức độ PPIX trong hồng cầu có mối tương quan mạnh với mức transferrin huyết thanh. Ở tất cả các giai đoạn phân hóa trong nghiên cứu của chúng tôi, sự biểu hiện thụ thể transferrin trong các tế bào hồng cầu tủy xương ở chuột Fechm1Pas là bình thường, trong khi đó không bình thường ở bệnh nhân thiếu máu do thiếu sắt. Dựa trên những quan sát này, chúng tôi đề xuất rằng liệu pháp sắt đường uống không phải là phương pháp điều trị ưu tiên cho bệnh nhân EPP và con đường transferrin PPIX - gan đóng vai trò trong việc điều phối phân bố sắt giữa các kho sắt ngoại vi, lách và tủy xương.

Từ khóa


Tài liệu tham khảo

Sassa S and Kappas A. Molecular aspects of the inherited porphyrias. J Intern Med2000; 247:169–178. Cox TM. Erythropoietic protoporphyria. J Inherit Metab Dis1997; 20:258–269. Bloomer J, Wang Y, Singhal A, Risheg H. Molecular studies of liver disease in erythropoietic protoporphyria. J Clin Gastroenterol2005; 39:S167–S175. Gouya L, Puy H, Robreau AM, et al. The penetrance of dominant erythropoietic protoporphyria is modulated by expression of wild-type FECH. Nat Genet2002; 30:27–28. Gouya L, Martin-Schmitt C, Robreau AM, et al. Contribution of a common single-nucleotide polymorphism to the genetic predisposition for erythropoietic protoporphyria. Am J Hum Genet2006; 78:2–14. Brun A and Sandberg S. Mechanisms of photosensitivity in porphyric patients with special emphasis on erythropoietic protoporphyria. J Photochem Photobiol B1991; 10:285–302. Meerman L. Erythropoietic protoporphyria: an overview with emphasis on the liver. Scand J Gastroenterol Suppl2000;79–85. Schneider-Yin X, Gouya L, Meier-Weinand A, Deybach JC, Minder EI. New insights into the pathogenesis of erythropoietic protoporphyria and their impact on patient care. Eur J Pediatr2000; 159:719–725. Todd DJ. Erythropoietic protoporphyria. Br J Dermatol1994; 131:751–766. Nakahashi Y, Miyazaki H, Kadota Y, et al. Molecular defect in human erythropoietic protoporphyria with fatal liver failure. Hum Genet1993; 91:303–306. Baart de la Faille H, Bijlmer-Iest JC, van Hattum J, Koningsberger J, Rademakers LH, van Welden H. Erythropoietic protoporphyria: clinical aspects with emphasis on the skin [review]. Curr Problems Dermatol1991; 20:123–134. DeLeo VA, Poh-Fitzpatrick M, Mathews-Roth M, Harber LC. Erythropoietic protoporphyria: 10 years experience. Am J Med1976; 60:8–22. Magness ST, Maeda N, Brenner DA. An exon 10 deletion in the mouse ferrochelatase gene has a dominant-negative effect and causes mild protoporphyria. Blood2002; 100:1470–1477. Tutois S, Montagutelli X, Da Silva V, et al. Erythropoietic protoporphyria in the house mouse: a recessive inherited ferrochelatase deficiency with anemia, photosensitivity, and liver disease. J Clin Invest1991; 88:1730–1736. Boulechfar S, Lamoril J, Montagutelli X, et al. Ferrochelatase structural mutant (Fechm1Pas) in the house mouse. Genomics1993; 16:645–648. Richard E, Robert E, Cario-Andre M, et al. Hematopoietic stem cell gene therapy of murine protoporphyria by methylguanine-DNA-methyltransferase-mediated in vivo drug selection. Gene Ther2004; 11:1638–1647. Abitbol M, Bernex F, Puy H, et al. A mouse model provides evidence that genetic background modulates anemia and liver injury in erythropoietic protoporphyria. Am J Physiol Gastrointest Liver Physiol2005; 288:G1208–G1216. Poulos V and Lockwood WH. A rapid method for estimating red blood cell porphyrin. Int J Biochem1980; 12:1049–1050. Li FM, Lim CK, Peters TJ. An HPLC assay for rat liver ferrochelatase activity. Biomed Chromatogr1987; 2:164–168. Martin ME, Nicolas G, Hetet G, Vaulont S, Grandchamp B, Beaumont C. Transferrin receptor 1 mRNA is downregulated in placenta of hepcidin transgenic embryos. FEBS Lett2004; 574:187–191. Marsden CH and Simmonds RG. Purification of mouse haptoglobin by antibody affinity chromatography and development of an ELISA to measure serum haptoglobin levels. J Immunol Methods1988; 108:53–59. Torrance JD and Bothwell TH. A simple technique for measuring storage iron concentrations in formalinised liver samples. S Afr J Med Sci1968; 33:9–11. Simpson RJ and Peters TJ. Studies of Fe3+ transport across isolated intestinal brush-border membrane of the mouse. Biochim Biophys Acta1984; 772:220–226. Pountney DJ, Raja KB, Simpson RJ, Wrigglesworth JM. The ferric-reducing activity of duodenal brush-border membrane vesicles is associated with a b-type haem. Biometals1999; 12:53–62. Nicolas G, Bennoun M, Devaux I, et al. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc Natl Acad Sci U S A2001; 98:8780–8785. Moreau-Gaudry F, Xia P, Jiang G, et al. High-level erythroid-specific gene expression in primary human and murine hematopoietic cells with self-inactivating lentiviral vectors. Blood2001; 98:2664–2672. van Krieken JH, te Velde J, Hermans J, Cornelisse CJ, Welvaart C, Ferrari M. The amount of white pulp in the spleen; a morphometrical study done in methacrylate-embedded splenectomy specimens. Histopathology1983; 7:767–782. Ganz T and Nemeth E. Iron imports, IV: hepcidin and regulation of body iron metabolism. Am J Physiol Gastrointest Liver Physiol2006; 290:G199–G203. McKie AT, Barrow D, Latunde-Dada GO, et al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science2001; 291:1755–1759. Cook JD. Diagnosis and management of iron-deficiency anaemia. Best Pract Res Clin Haematol2005; 18:319–332. Beamer WG, Pelsue SC, Shultz LD, Sundberg JP, Barker JE. The flaky skin (fsn) mutation in mice: map location and description of the anemia. Blood1995; 86:3220–3226. R'Zik S, Loo M, Beguin Y. Reticulocyte transferrin receptor (TfR) expression and contribution to soluble TfR levels. Haematologica2001; 86:244–251. Bloomer JR, Hill HD, Kools AM, Straka JG. Heme synthesis in protoporphyria. Curr Problems Dermatol1991; 20:135–147. Brun A, Steen H, Sandberg S. Erythropoietic protoporphyria: two populations of reticulocytes, with and without protoporphyrin. Eur J Clin Invest1996; 26:270–278. Mathews-Roth MM. Anemia in erythropoietic protoporphyria [letter]. JAMA1974; 230:824. Rothstein G, Lee R, Cartwright GE. Sideroblastic anemia with dermal photosensitivity and greatly increased erythrocyte protoporphyrin. N Engl J Med1969; 280:587–590. Romslo I, Brun A, Sandberg S, Bottomley SS, Hovding G, Talstad I. Sideroblastic anemia with markedly increased free erythrocyte protoporphyrin without dermal photosensitivity. Blood1982; 59:628–633. Lim HW, Cooper D, Sassa S, Dosik H, Buchness MR, Soter NA. Photosensitivity, abnormal porphyrin profile, and sideroblastic anemia. J Am Acad Dermatol1992; 27:287–292. Rademakers LH, Koningsberger JC, Sorber CW, Baart de la Faille H, Van Hattum J, Marx JJ. Accumulation of iron in erythroblasts of patients with erythropoietic protoporphyria. Eur J Clin Invest1993; 23:130–138. Aplin C, Whatley SD, Thompson P, et al. Late-onset erythropoietic porphyria caused by a chromosome 18q deletion in erythroid cells. J Invest Dermatol2001; 117:1647–1649. Turnbull A, Baker H, Vernon-Roberts B, Magnus IA. Iron metabolism in porphyria cutanea tarda and in erythropoietic protoporphyria. Q J Med1973; 42:341–355. Adamsky K, Weizer O, Amariglio N, et al. Decreased hepcidin mRNA expression in thalassemic mice. Br J Haematol2004; 124:123–124. Frazer DM and Anderson GJ. The orchestration of body iron intake: how and where do enterocytes receive their cues? Blood Cells Mol Dis2003; 30:288–297. Fitzsimons EJ and May A. The molecular basis of the sideroblastic anemias. Curr Opin Hematol1996; 3:167–172. Nakajima O, Okano S, Harada H, et al. Transgenic rescue of erythroid 5-aminolevulinate synthase-deficient mice results in the formation of ring sideroblasts and siderocytes. Genes Cells2006; 11:685–700. Bekri S, Kispal G, Lange H, et al. Human ABC7 transporter: gene structure and mutation causing X-linked sideroblastic anemia with ataxia with disruption of cytosolic iron-sulfur protein maturation. Blood2000; 96:3256–3264. Li J, Kogan M, Knight SA, Pain D, Dancis A. Yeast mitochondrial protein, Nfs1p, coordinately regulates iron-sulfur cluster proteins, cellular iron uptake, and iron distribution. J Biol Chem1999; 274:33025–33034. Hentze MW and Kuhn LC. Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proc Natl Acad Sci U S A1996; 93:8175–8182. Schranzhofer M, Schifrer M, Cabrera JA, et al. Remodeling the regulation of iron metabolism during erythroid differentiation to ensure efficient heme biosynthesis. Blood2006; 107:4159–4167. Milligan A, Graham-Brown RA, Sarkany I, Baker H. Erythropoietic protoporphyria exacerbated by oral iron therapy. Br J Dermatol1988; 119:63–66.