Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations
Tóm tắt
Tài liệu tham khảo
Braga-Neto, UM, & Dougherty, ER. (2015). Error Estimation for Pattern Recognition. New York: Wiley-IEEE Press.
Kay, S. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory. New Jersey: Prentice-Hall.
Knight, J, Ivanov, I, Dougherty, ER (2014). MCMC implementation of the optimal Bayesian classifier for non-gaussian models: model-based RNA-seq classification. BMC Bioinformatics, 15. doi:10.1186/s12859-014-0401-3.
Esfahani, MS, & Dougherty, ER (2015). An optimization-based framework for the transformation of incomplete biological knowledge into a probabilistic structure and its application to the utilization of gene/protein signaling pathways in discrete phenotype classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics. doi:10.1109/TCBB.2015.2424407.
Jaynes, ET (1968). Prior probabilities. IEEE Transactions on Systems Science and Cybernetics, 4, 227–241.
Arnold, L. (1974). Stochastic Differential Equations: Theory and Applications. New York: Wiley.
Murphy, KP. (2012). Machine Learning: A Probabilistic Perspective. Cambridge: MIT Press.
DeGroot, MH. (1970). Optimal Statistical Decisions. New York: McGrawHill.
Thompson, K, & Kubatko, LS (2013). Using ancestral information to detect and localize quantitative trait loci in genome-wide association studies. BMC Bioinformatics, 14. doi:10.1186/1471-2105-14-200.
Dougherty, ER. (1999). Random Processes for Image and Signal Processing. New York: SPIE Press and IEEE Presses.
Duda, RO, Hart, PE, Stork, DG. (2000). Pattern Classification. New York: Wiley.