Kết hợp các hiệu ứng dài hạn trong việc xác định hiệu quả của các loại hình quảng cáo trực tuyến khác nhau

Springer Science and Business Media LLC - Tập 22 - Trang 327-340 - 2011
Ralph Breuer1,2, Malte Brettel1, Andreas Engelen1
1Center for Entrepreneurship, Aachen University (RWTH), Aachen, Germany
2Aachen, Germany

Tóm tắt

Mặc dù quảng cáo trực tuyến đã trở thành một thành phần chính trong chiến lược marketing và vẫn đang gia tăng tầm quan trọng, các nghiên cứu về hiệu ứng quảng cáo lâu dài, hoặc trễ, thường không xem xét các kênh quảng cáo trực tuyến hoặc coi quảng cáo trực tuyến là một khối thống nhất. Chúng tôi phân tích hiệu quả ngắn hạn và dài hạn của các loại kênh quảng cáo trực tuyến khác nhau bằng cách kết hợp các độ trễ thời gian riêng biệt cho mỗi kênh quảng cáo. Chúng tôi xem xét tác động doanh thu của quảng cáo qua email, quảng cáo banner và quảng cáo so sánh giá (PCA) bằng cách sử dụng mẫu gồm 2,8 triệu giao dịch mua và hơn 1,1 triệu khách hàng cá nhân được tổng hợp trong 365 ngày. Phân tích của chúng tôi cho thấy quảng cáo qua email có hiệu ứng lâu dài nhất, tiếp theo là quảng cáo banner và quảng cáo PCA. Chúng tôi nhận thấy rằng độ dài của hiệu ứng không phải lúc nào cũng đi cùng với cường độ của nó, chẳng hạn như quảng cáo banner kéo dài hơn quảng cáo PCA nhưng lại không mang lại doanh thu thực tế tốt hơn. Nghiên cứu này cung cấp cái nhìn quan trọng cho lý thuyết và thực tiễn vì nó cho thấy cách mô hình hóa các hiệu ứng quảng cáo lâu dài và cung cấp những hiểu biết có ý nghĩa cho việc cải thiện việc phân bổ ngân sách quảng cáo.

Từ khóa

#quảng cáo trực tuyến #hiệu quả quảng cáo #quảng cáo qua email #quảng cáo banner #quảng cáo so sánh giá #ngân sách quảng cáo

Tài liệu tham khảo

Amazon (2010). Textbook season best practices. http://www.amazon.com/gp/help/ customer/display.html?nodeId = 200270460. Accessed 10 July 2010. Bass, F. M., & Clarke, D. G. (1972). Testing distributed lag models of advertising effect. Journal of Marketing Research (JMR), 9(3), 298–308. Bass, F. M., & Leone, R. P. (1983). Temporal aggregation, the data interval bias, and empirical estimation of bimonthly relations from annual data. Management Science, 29(1), 1–11. Berkowitz, D., Allaway, A., & D'Souza, G. (2001a). The impact of differential lag effects on the allocation of advertising budgets across media. Journal of Advertising Research, 41(2), 27–36. Berkowitz, D., Allaway, A., & D'Souza, G. (2001b). Estimating differential lag effects for multiple media across multiple stores. Journal of Advertising, 30(4), 59–65. Bock, G. W., Lee, S. Y. T., & Li, H. Y. (2007). Price comparison and price dispersion: products and retailers at different internet maturity stages. International Journal of Electronic Commerce, 11(4), 101–124. Chang, Y., & Thorson, E. (2004). Television and web advertising synergies. Journal of Advertising, 33(2), 75–84. Clark, B. H. (1999). Marketing performance measures: history and interrelationships. Journal of Marketing Management, 15(8), 711–732. Clarke, D. G. (1976). Econometric measurement of the duration of advertising effect on sales. Journal of Marketing Research (JMR), 13(4), 345–357. Dekimpe, M. G., & Hanssens, D. M. (1995). The persistence of marketing effects on sales. Marketing Science, 14(1), 1–21. Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427–431. Durbin, J., & Watson, G. S. (1950). Testing for serial correlation in least squares regression: I. Biometrika, 37(3/4), 409–428. Green, P. E. (1973). On the analysis of interactions in marketing research data. Journal of Marketing Research (JMR), 10(4), 410–420. Greene, W. H. (2008). Econometric analysis. Upper Saddle River: Pearson Prentice Hall. Ha, L. (2008). Online advertising research in advertising journals: A review. Journal of Current Issues & Research in Advertising, 30(1), 31–48. Hanssens, D., Parsons, L. J., & Schultz, R. L. (2001). Market response models: Econometric and time series analysis. Boston: Kluwer Academic Publishes. Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6), 1251–1271. Herrington, J. D., & Dempsey, W. A. (2005). Comparing the current effects and carryover of national-, regional-, and local-sponsor advertising. Journal of Advertising Research, 45(1), 60–72. Keller, K. L. (1987). Memory factors in advertising: the effect of advertising retrieval cues on brand evaluations. Journal of Consumer Research, 14(3), 316–333. Kim, J., & McMillan, S. J. (2008). Evaluation of internet advertising research: a bibliometric analysis of citations from key sources. Journal of Advertising, 37(1), 99–112. Koyck, L. M. (1954). Distributed lags and investment analysis. Amsterdam: North-Holland Pub. Co. Latcovich, S., & Smith, H. (2001). Pricing, sunk costs, and market structure online: Evidence from book retailing. Oxford Review of Economic Policy, 17(2), 217–234. Leone, R. P. (1995). Generalizing what is known about temporal aggregation and advertising carryover. Marketing Science, 14(3), G141–G150. MacKenzie, S. B., Lutz, R. J., & Belch, G. E. (1986). The role of attitude toward the ad as a mediator of advertising effectiveness: a test of competing explanations. Journal of Marketing Research (JMR), 23(2), 130–143. Manchanda, P., Dubé, J.-P., Goh, K. Y., & Chintagunta, P. K. (2006). The effect of banner advertising on internet purchasing. Journal of Marketing Research (JMR), 43(1), 98–108. Morimoto, M., & Chang, S. (2006). Consumers' attitudes toward unsolicited commercial e-mail and postal direct mail marketing methods: Intrusiveness, perceived loss of control, and irritation. Journal of Interactive Advertising, 7(1), 8–20. Nabi, R. L., & Beth, M. (2009). Theories of persuasion. The SAGE Handbook Of Media Processes and Effects. London: Sage. Naik, P. A., & Peters, K. (2009). A hierarchical marketing communications model of online and offline media synergies. Journal of Interactive Marketing (Mergent, Inc.), 23(4), 288–299. doi:10.1016/j.intmar.2009.07.005. Naik, P. A., & Raman, K. (2003). Understanding the impact of synergy in multimedia communications. Journal of Marketing Research, 40(4), 375–388. Palda, K. S. (1965). The measurement of cumulative advertising effects. Journal of Business, 38(2), 162–179. Papatla, P., & Bhatnagar, A. (2002). Choosing the right mix of on-line affiliates: how do you select the best? Journal of Advertising, 31(3), 69–81. Pauwels, K., & Weiss, A. (2008). Moving from free to fee: how online firms market to change their business model successfully. Journal of Marketing, 72(3), 14–31. doi:10.1509/jmkg.72.3.14. Petty, R. E., & Cacioppo, J. T. (1986). Communication and persuasion: Central and peripheral routes to attitude change. New York: Springer. Petty, R. E., Cacioppo, J. T., & Schumann, D. (1983). Central and peripheral routes to advertising effectiveness: The moderating role of involvement. Journal of Consumer Research, 10(2), 135–146. Rappaport, S. D. (2007). Lessons from online practice: New advertising models. Journal of Advertising Research, 47(2), 135–141. doi:10.2501/s0021849907070158. Rust, R. T., Ambler, T., Carpenter, G. S., Kumar, V., & Srivastava, R. K. (2004). Measuring marketing productivity: current knowledge and future directions. Journal of Marketing, 68(4), 76–89. Shamdasani, P. N., Stanaland, A. J. S., & Tan, J. (2001). Location, location, location: Insights for advertising placement on the web. Journal of Advertising Research, 41(4), 7–21. Shankar, V., & Malthouse, E. C. (2007). The growth of interactions and dialogs in interactive marketing. Journal of Interactive Marketing (John Wiley & Sons), 21(2), 2–4. doi:10.1002/dir.20080. Sissors, J. Z., & Baron, R. B. (2002). Advertising media planning. New York: McGraw-Hill. Smith, M. D., & Brynjolfsson, E. (2001). Consumer decision-making at an internet shopbot: Brand still matters. The Journal of Industrial Economics, 49(4), 541–558. Srinivasan, V., & Weir, H. A. (1988). A direct aggregation approach to inferring microparameters of the koyck advertising-sales relationship from macro data. Journal of Marketing Research (JMR), 25(2), 145–156. Srinivasan, S., Vanhuele, M., & Pauwels, K. (2010). Mind-set metrics in market response models: An integrative approach. Journal of Marketing Research (JMR), 47(4), 672–684. doi:10.1509/jmkr.47.4.672. Tellis, G. J., Chandy, R. K., MacInnis, D., & Thaivanich, P. (2005). Modeling the microeffects of television advertising: Which ad works, when, where, for how long, and why? Marketing Science, 24(3), 359–366. Vakratsas, D., & Ambler, T. (1999). How advertising works: what do we really know? Journal of Marketing, 63(1), 26–43. Vakratsas, D., & Ma, Z. (2005). A look at the long-run effectiveness of multimedia advertising and its implications for budget allocation decisions. Journal of Advertising Research, 45(2), 241–254. Wiesel, T., Pauwels, K., & Arts, J. (2010). Marketing's profit impact: Quantifying online and offline funnel progression. Marketing Science, forthcoming. Wooldridge, J. M. (2009). Introductory econometrics: a modern approach. Mason: South-Western Cengage Learning. Yoo, B., & Mandhachitara, R. (2003). Estimating advertising effects on sales in a competitive setting. Journal of Advertising Research, 43(3), 310–321. Zellner, A., & Geisel, M. S. (1970). Analysis of distributed lag models with applications to consumption function estimation. Econometrica, 38(6), 865–888.