InChI in the wild: an assessment of InChIKey searching in Google

Springer Science and Business Media LLC - Tập 5 - Trang 1-10 - 2013
Christopher Southan1
1TW2Informatics, Göteborg, Sweden

Tóm tắt

While chemical databases can be queried using the InChI string and InChIKey (IK) the latter was designed for open-web searching. It is becoming increasingly effective for this since more sources enhance crawling of their websites by the Googlebot and consequent IK indexing. Searchers who use Google as an adjunct to database access may be less familiar with the advantages of using the IK as explored in this review. As an example, the IK for atorvastatin retrieves ~200 low-redundancy links from a Google search in 0.3 of a second. These include most major databases and a very low false-positive rate. Results encompass less familiar but potentially useful sources and can be extended to isomer capture by using just the skeleton layer of the IK. Google Advanced Search can be used to filter large result sets. Image searching with the IK is also effective and complementary to open-web queries. Results can be particularly useful for less-common structures as exemplified by a major metabolite of atorvastatin giving only three hits. Testing also demonstrated document-to-document and document-to-database joins via structure matching. The necessary generation of an IK from chemical names can be accomplished using open tools and resources for patents, papers, abstracts or other text sources. Active global sharing of local IK-linked information can be accomplished via surfacing in open laboratory notebooks, blogs, Twitter, figshare and other routes. While information-rich chemistry (e.g. approved drugs) can exhibit swamping and redundancy effects, the much smaller IK result sets for link-poor structures become a transformative first-pass option. The IK indexing has therefore turned Google into a de-facto open global chemical information hub by merging links to most significant sources, including over 50 million PubChem and ChemSpider records. The simplicity, specificity and speed of matching make it a useful option for biologists or others less familiar with chemical searching. However, compared to rigorously maintained major databases, users need to be circumspect about the consistency of Google results and provenance of retrieved links. In addition, community engagement may be necessary to ameliorate possible future degradation of utility.

Tài liệu tham khảo

Nicola G, Liu T, Gilson MK: Public Domain Databases for Medicinal Chemistry. J Med Chem. 2012, 55: 6987-7002. 10.1021/jm300501t. Googling for InChIs. http://lists.w3.org/Archives/Public/public-swls-ws/2004Oct/att-0019/, InChI Trust Website. http://www.inchi-trust.org/, Google Webmaster Tools. https://support.google.com/webmasters/?hl=en&hlrm=sv, Sawant P, Maier ME: A novel strategy towards the atorvastatin lactone. Tetrahedron. 2010, 66: 9738-9744. 10.1016/j.tet.2010.10.028. Google Advanced Search. http://www.google.ca/advanced_search, Schreiber F: High quality visualization of biochemical pathways in BioPath. In Silico Biol. 2002, 2: 59-73. Lennernäs H: Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 2003, 42: 1141-1160. 10.2165/00003088-200342130-00005. Muresan S, Petrov P, Southan C, Kjellberg MJ, Kogej T, Tyrchan C, Varkonyi P, Xie PHH: Making every SAR point count: the development of Chemistry Connect for the large-scale integration of structure and bioactivity data. Drug Discov Today. 2011, 16: 1019-1030. 10.1016/j.drudis.2011.10.005. SureChemOpen. https://open.surechem.com/login, May PC, Dean RA, Lowe SL, Martenyi F, Sheehan SM, Boggs LN, Monk SA, Mathes BM, Mergott DJ, Watson BM, Stout SL, Timm DE, Smith Labell E, Gonzales CR, Nakano M, Jhee SS, Yen M, Ereshefsky L, Lindstrom TD, Calligaro DO, Cocke PJ, Greg Hall D, Friedrich S, Citron M, Audia JE: Robust central reduction of amyloid-β in humans with an orally available, non-peptidic β-secretase inhibitor. J Neurosci. 2011, 31: 16507-16516. 10.1523/JNEUROSCI.3647-11.2011. Lowe DM, Corbett PT, Murray-Rust P, Glen RC: Chemical name to structure: OPSIN, an open source solution. J Chem Inf Model. 2011, 51: 739-753. 10.1021/ci100384d. Chemical Identifier Resolver. http://cactus.nci.nih.gov/chemical/structure, Swain M: chemicalize.org. J Chem Inf Model. 2012, 52: 613-615. 10.1021/ci300046g. Open antimalarial LabTrove site. http://malaria.ourexperiment.org/, Orchard S, Al-Lazikani B, Bryant S, Clark D, Calder E, Dix I, Engkvist O, Forster M, Gaulton A, Gilson M, Glen R, Grigorov M, Hammond-Kosack K, Harland L, Hopkins A, Larminie C, Lynch N, Mann RK, Murray-Rust P, Lo Piparo E, Southan C, Steinbeck C, Wishart D, Hermjakob H, Overington J, Thornton J: Minimum information about a bioactive entity (MIABE). Nat Rev Drug Discov. 2011, 10: 661-669. 10.1038/nrd3503. A Google scrape experiment. http://cdsouthan.blogspot.se/2012/07/a-google-scrape-experiment.html, MRC collaboration structures. http://figshare.com/articles/AZ_MRC_compounds_with_PubChem_IDs_and_patent_mappings/95806, Southan C, Williams AJ, Ekins S: Challenges and recommendations for obtaining chemical structures of industry-provided repurposing candidates. Drug Discov Today. 2013, 18: 58-70. 10.1016/j.drudis.2012.11.005.