In-vivo validation of interpolation-based phase offset correction in cardiovascular magnetic resonance flow quantification: a multi-vendor, multi-center study
Tóm tắt
A velocity offset error in phase contrast cardiovascular magnetic resonance (CMR) imaging is a known problem in clinical assessment of flow volumes in vessels around the heart. Earlier studies have shown that this offset error is clinically relevant over different systems, and cannot be removed by protocol optimization. Correction methods using phantom measurements are time consuming, and assume reproducibility of the offsets which is not the case for all systems. An alternative previously published solution is to correct the in-vivo data in post-processing, interpolating the velocity offset from stationary tissue within the field-of-view. This study aims to validate this interpolation-based offset correction in-vivo in a multi-vendor, multi-center setup. Data from six 1.5 T CMR systems were evaluated, with two systems from each of the three main vendors. At each system aortic and main pulmonary artery 2D flow studies were acquired during routine clinical or research examinations, with an additional phantom measurement using identical acquisition parameters. To verify the phantom acquisition, a region-of-interest (ROI) at stationary tissue in the thorax wall was placed and compared between in-vivo and phantom measurements. Interpolation-based offset correction was performed on the in-vivo data, after manually excluding regions of spatial wraparound. Correction performance of different spatial orders of interpolation planes was evaluated. A total of 126 flow measurements in 82 subjects were included. At the thorax wall the agreement between in-vivo and phantom was − 0.2 ± 0.6 cm/s. Twenty-eight studies were excluded because of a difference at the thorax wall exceeding 0.6 cm/s from the phantom scan, leaving 98. Before correction, the offset at the vessel as assessed in the phantom was − 0.4 ± 1.5 cm/s, which resulted in a − 5 ± 16% error in cardiac output. The optimal order of the interpolation correction plane was 1st order, except for one system at which a 2nd order plane was required. Application of the interpolation-based correction revealed a remaining offset velocity of 0.1 ± 0.5 cm/s and 0 ± 5% error in cardiac output. This study shows that interpolation-based offset correction reduces the offset with comparable efficacy as phantom measurement phase offset correction, without the time penalty imposed by phantom scans. The study was registered in The Netherlands National Trial Register (NTR) under TC
4865
. Registered 19 September 2014. Retrospectively registered.
Tài liệu tham khảo
Kilner PJ, Gatehouse PD, Firmin DN. Flow measurement by magnetic resonance: a unique asset worth optimising. J Cardiovasc Magn Reson. 2007;9:723–8.
Nayak KS, Nielsen JF, Bernstein MA, Markl M, Gatehouse PD, Botnar RM, Saloner D, Lorenz C, Wen H, Hu BS, Epstein FH, Oshinkski JN, Raman SV. Cardiovascular magnetic resonance phase contrast imaging. J Cardiovasc Magn Reson. 2015;17:71.
Chernobelsky A, Shubayev O, Comeau CR, Wolff SD. Baseline correction of phase contrast images improves quantification of blood flow in the great vessels. J Cardiovasc Magn Reson. 2007;9:681–5.
Gatehouse PD, Rolf MP, Graves MJ, Hofman MBM, Totman J, Werner B, Quest RA, Liu Y, von Spiczak J, Dieringer M, Firmin DN, van Rossum AC, Lombardi M, Schwitter J, Schulz-Menger J, Kilner PJ. Flow measurement by magnetic resonance: a multi-Centre multi-vendor study of background phase offset errors that can compromise the accuracy of derived regurgitant or shunt flow measurements. J Cardiovas Magn Reson. 2010;12:5.
Bollache E, van Ooij P, Powell A, Carr J, Markl M, Barker AJ. Comparison of 4D flow and 2D velocity-encoded phase contrast MRI sequences for the evaluation of aortic hemodynamics. Int J Cardiovasc Imaging. 2016;32:1529–41.
Holland BJ, Printz BF, Lai WW. Baseline correction of phase-contrast images in congenital cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2010;12:11.
Bernstein MA, Zhou XJ, Polzin JA, King KF, Ganin A, Pelc NJ, et al. Concomitant gradient terms in phase contrast MR: analysis and correction. Magn Reson Med. 1998;39:300–8.
Walker PG, Cranney GB, Scheidegger MB, Waseleski G, Pohost GM, Yoganathan AP. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging. 1993;3:521–30.
Giese D, Haeberlin M, Barmet C, Pruessmann KP, Schaeffter T, Kozerke S. Analysis and correction of background velocity offsets in phase-contrast flow measurements using magnetic field monitoring. Magn Reson Med. 2012;67:1294–302.
Busch J, Vannesjo SJ, Barmet C, Pruessmann KP, Kozerke S. Analysis of temperature dependence of background phase errors in phase-contrast cardiovascular magnetic resonance. J Cardiovas Magn Reson. 2014;16:97.
Rolf MP, Hofman MBM, Gatehouse PD, Markenroth Bloch K, Heymans MW, Ebbers T, Graves MJ, Totman JJ, Werner B, van Rossum AC, Kilner PJ, Heethaar RM. Sequence optimization to reduce velocity offsets in cardiovascular magnetic resonance flow quantification – a multi-vendor study. J Cardiovas Magn Reson. 2011;13:18.
Meierhofer C, Lyko C, Schneider EP, Stern H, Martinoff S, Hess J, Fratz S. Baseline correction does not improve flow quantification in phase-contrast velocity measurement for routine clinical practice. Clin Imaging. 2015;39:427–31.
Gatehouse PD, Rolf MP, Markenroth-Bloch K, Kilner PJ, Hofman MBM. The temporal stability of phase-contrast velocity mapping background offset errors. J Cardiovasc Magn Reson. 2012;14:72.
Lankhaar JW, Hofman MBM, Marcus JT, Zwanenburg JJM, Faes TJC, Vonk-Noordegraaf A. Correction of phase offset errors in main pulmonary artery flow quantification. J Magn Reson Imaging. 2005;22:73–9.
Offerman EJ, Koktzoglou I, Glielmi C, Edelman RR. Evaluation of nth order polynomial phase correction in reprojected line scan phase contrast MRA. Proc ISMRM. 2011:1196.
Tan ET, Glockner JF, Solana AB, Stanley DW, Hardy CJ. Self-calibrated phase-contrast correction of nonlinear background phase in quantitative cardiac imaging. Proc ISMRM. 2014:3894.
Busch J, Giese D, Kozerke S. Image-based background phase error correction in 4D flow MRI revisited. J Magn Reson Imaging. 2017;46:1516–25.
Hofman MBM, Lankhaar JW, van Rossum AC. Offset correction in MR phase contrast velocity quantification within the thorax. Proc ISMRM. 2005:1733.
Rigsby CK, Hilpipre N, McNeal GR, Zhang G, Boylan EE, Popescu AR, Choi G, Greiser A, Deng J. Analysis of an automated background correction method for cardiovascular MR phase contrast imaging in children and young adults. Pediatr Radiol. 2014;44:265–73.
Dyverfeldt P, Bissell M, Barker AJ, et al. 4D flow cardiovascular magnetic resonance consensus statement. J Cardiovasc Magn Reson. 2015;17:72.
Ebbers T, Haraldsson H, Dyverfeldt P. Higher order weighted leastsquares phase offset correction for improved accuracy in phasecontrast MRI. Proc 16th annual meeting ISMRM, Toronto 2008. p. 1367.
Winkelmann R, Börnert P, Nehrke K, Dössel O. Efficient foldover suppression using SENSE. Magma. 2005;18:63–8.
Lin Y, Jiang K, Chung YC. Comparison of two methods for correcting baseline offset error in phase-contrast MR imaging. J Cardiovasc Magn Reson. 2016;18(Suppl 1):P334.
In Den Kleef JJE, Groen JP, De GRGUSPC. Method and apparatus for carrying out a phase correction in MR angiography. US Patent. 1989;4(870):361.
Gatehouse PD, Greiser A, Firmin DN. Effects from RF spoiling disequilibrium in the background offsets of phase-contrast velocity imaging. J Cardiovasc Magn Reson. 2012;14(Suppl 1):W56.
Sipilä P, Lange D, Lechner S, Löw W, Gross P, Baller M, Wachutka G, Wiesinger F. Robust, susceptibility-matched NMR probes for compensation of magnetic field imperfections in magnetic resonance imaging (MRI). Sensors Actuators. 2008; A 145-146:139–146.