In vitro gastrointestinal digestion study of two wheat cultivars and evaluation of xylanase supplementation

Springer Science and Business Media LLC - Tập 6 - Trang 1-14 - 2015
Mickael Lafond1, Bernard Bouza2, Sandrine Eyrichine3, Friedrich Rouffineau2, Luc Saulnier3, Thierry Giardina1, Estelle Bonnin3, Aurélie Preynat2
1iSm2 - BiosCiences UMR 7313, Aix Marseille Université, Centrale Marseille, CNRS, Marseille, France
2Adisseo France S.A.S., Centre d’Expertise et de Recherche en Nutrition, Commentry, France
3INRA, UR 1268 - Biopolymères - Interactions – Assemblages, Nantes, France

Tóm tắt

The filamentous fungus Talaromyces versatilis is known to improve the metabolizable energy of wheat-based poultry diets thanks to its ability to produce a pool of CAZymes and particularly endo-β(1,4)-xylanases. In order to appreciate their in vivo mode of action, the supplementation effect of two of its xylanases, XynD and XynB from families GH10 and GH11 respectively, have been evaluated on two different wheat cultivars Caphorn and Isengrain, which were chosen amongst 6 varieties for their difference in non starch polysaccharides content and arabinoxylan composition. Polysaccharides digestion was followed during 6 h along the digestive tract using the TNO gastrointestinal model-1, to mimic monogastric metabolism. Polysaccharide degradation appeared to occur mainly at the jejunal level and was higher with Isengrain than with Caphorn. For both cultivars, XynD and XynB supplementation increased notably the amount of reducing end sugars into the jejuno-ileal dialysates, which has been confirmed by a valuable increase of the soluble glucose into the jejunal dialysates. The amounts of arabinose and xylose into the dialysates and ileal deliveries increased consequently mainly for Caphorn, suggesting that XynD and XynB supplementation in wheat-based diet could alleviate the anti-nutritional effects of arabinoxylans by limiting the physical entrapment of starch and could increase the available metabolizable energy.

Tài liệu tham khảo

Austin SC, Wiseman J, Chesson A. Influence of non-starch polysaccharides structure and the metabolisable energy of U.K. wheat fed to poultry. J Cereal Sci. 1999;29(1):77–88. Gutiérrez-Alamo A, Pérez de Ayala P, Verstegen MWA, Den Hartog LA, Villamide MJ. Variability in wheat: factors affecting its nutritional value. World’s Poult Sci J. 2008;64(1):20–39. Slominski BA, Gdala J, Boros D, Campbell LD, Guenter W, Jones O. Variability in chemical and nutritive composition of Canadian wheat and the potential for its minimization by enzyme use. In: Proceeding of the XXI World Poultry Congress, Montreal, Canada; 2000 (CD-ROM) Thender O, Westerlund E, Aman P, Graham H. Plant cell walls and monogastric diets. Anim Feed Sci Technol. 1989;23(3):205–25. Bedford MR, Autio K. Microscopic examination of feed and digesta from wheat-fed broiler chickens and its relation to bird performance. Poult Sci. 1996;75:1–14. Wiseman J, Nicol NT, Norton G. Relationship between apparent metabolisable energy (AME) values and in vivo/ in vitro starch digestibility of wheat for broilers. World Poult Sci J. 2000;56(4):306–18. Kiarie E, Romero LF, Nyachoti CM. The role of added feed enzymes in promoting gut health in swine and poultry. Nutr Res Rev. 2013;26(1):71–88. Henry RJ. Pentosan and (1–3)(1–4)-β-glucan concentrations in endosperm and wholegrain of wheat, barley, oats and rye. J Cereal Sci. 1987;6(3):253–8. Choct M: Feed non-starch polysaccharides: chemical structures and nutritional significance. In: Feed Milling International 1997, 13–26. Saulnier L, Guillon F, Chateigner-Boutin AL. Cell wall deposition and metabolism in wheat grain. J Cereal Sci. 2012;56(1):91–108. Bedford MR, Classen HL. An in vitro assay for prediction of broiler intestinal viscosity and growth when fed rye-based diets in the presence of exogenous enzymes. Poult Sci. 1993;72(1):137–43. Mathlouthi N, Mallet S, Saulnier L, Quemener B, Larbier M. Effect of xylanase and β-glucanase addition on performance, nutrient digestibility, and physico-chemical conditions in the small intestine contents and caecal microflora of broiler chickens fed a wheat and barley-based diet. Anim Res. 2002;51(18):395–406. Meng X, Slominski BA, Nyachoti CM, Campbell LD, Guenter W. Degradation of cell wall polysaccharides by combinations of carbohydrase enzymes and their effect on nutrient utilization and broiler chicken performance. Poult Sci. 2005;84(1):37–47. Maisonnier-Grenier S, Clavurier K, Saulnier L, Bonnin E, Geraert PA. Biochemical characteristics of wheat and their relation with apparent metabolisable energy value in broilers with or without non-starch polysaccharide enzyme. J Sci Food Agric. 2006;86(11):1714–21. Norvell LL. Fungal nomenclature. 1. Melbourne approves a new Code. Mycotaxon. Mycotaxon. 2011;116:481–90. Samson RA, Yilmaz N, Houbraken J, Spierenburg H, Seifert KA, Peterson SW, et al. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol. 2011;70:159–83. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37(SI):233–8. Guais O, Borderies G, Pichereaux C, Maestracci M, Neugnot V, Rossignol M, et al. Proteomics analysis of “Rovabio Excel”, a secreted protein cocktail from the filamentous fungus Penicillium funiculosum grown under industrial process fermentation. J Ind Microbiol Biotechnol. 2008;35(12):1659–68. Lafond M, Tauzin A, Desseaux V, Bonnin E, Ajandouz EH, Giardina T. GH10 xylanase D from Penicillium funiculosum: biochemical studies and xylooligosaccharide production. Microbial Cell Fact. 2011;10:1–20. Lafond M, Guais O, Maestracci M, Bonnin E, Giardina T: Four GH11 xylanases from the xylanolytic fungus Talaromyces versatilis act differently on (arabino)xylans. Appl Microb Biotechnol 2014, In press. Minekus M, Marteau P, Havenaar R, Huis In’t Veld JHJ. A multicompartmental dynamic computer-controlled model simulating the stomach and small-intestine. ATLA. 1995;23(2):197–209. Minekus M, Jelier M, Xiao J, Z Kondo S, Iwatsuki K, Kokubo S, et al. Effect of partially hydrolyzed guar gum (PHGG) on the bioaccessibility of fat and cholesterol. Biosci Biotechnol Biochem. 2005;69(5):932–8. Haraldsson AK, Rimsten L, Alminger M, Andersson R, Åman P, Sandberg AS. Digestion of barley malt porridges in a gastrointestinal model: Iron dialysability, iron uptake by Caco-2 cells and degradation of [beta]-glucan. J Cereal Sci. 2005;42(2):243–54. Fassler C, Arrigoni E, Venema K, Hafner V, Brouns F, Amado R. Digestibility of resistant starch containing preparations using two in vitro models. Eur J Nutr. 2006;45(8):445–53. Lafond M, Bouza B, Eyrichine S, Bonnin E, Crost EH, Geraert PA, et al. An integrative in vitro approach to analyse digestion of wheat polysaccharides and the effect of enzyme supplementation. Br J Nutr. 2011;106(2):264–73. Choct M, Annison G. The inhibition of nutrient digestion by wheat pentosans. Br J Nutr. 1992;67(1):123–32. del Alamo Gutiérrez A, Verstegen MWA, DenHartog LA, Pérez de Ayala P, Villamide MJ. Effect of wheat cultivar and enzyme addition to broiler chicken diets on nutrient digestibility, performance, and apparent metabolizable energy content. Poult Sci. 2008;87(4):759–67. Gutiérrez del Alamo A, Verstegen MWA, den Hartog LA, Pérez de Ayala P, Villamide MJ. Wheat starch digestion rate affects broiler performance. Poult Sci. 2009;88(8):1666–75. Gutiérrez del Alamo A, Pérez Ayala P, Den Hartog LA, Verstegen MWA, Villamide MJ. Wheat starch digestion rate in broiler chickens is affected by cultivar but not by wheat crop nitrogen fertilization. Br Poult Sci. 2009;50(3):341–9. Bailey MJ, Biely P, Poutanen K. Interlaboratory Testing of Methods for Assay of Xylanase Activity. J Biotechnol. 1992;23(3):257–70. Dervilly G, Saulnier L, Roger P, Thibault JF. Isolation of homogeneous fractions from wheat water-soluble arabinoxylans. Influence of the structure on their macromolecular characteristics. J Agric Food Chem. 2000;48(2):270–8. Saulnier L, Peneau N, Thibault JF. Variability in grain extract viscosity and water-soluble arabinoxylan content in wheat. J Cereal Sci. 1995;22(3):259–64. Childs CE, Röytiö H, Alhoniemi E, Fekete AA, Forssten SD, Hudjec N, et al. Xylo-oligosaccharides alone or in synbiotic combination with Bifidobacterium animalis subsp. lactis induce bifidogenesis and modulate markers of immune function in healthy adults: a double-blind, placebo-controlled, randomised, factorial cross-over study. Br J Nutr. 2014;24:1–12. Pritchard JR, Lawrence GJ, Larroque O, Li Z, Laidlaw HKC, Morell MK, et al. A survey of β-glucan and arabinoxylan content in wheat. J Sci Food Agric. 2011;91(7):1298–303. Finnie SM, Bettge AD, Morris CF. Influence of cultivar and environment on water-soluble and water-insoluble arabinoxylans in soft wheat. Cereal Chem. 2006;83(6):617–23. Saulnier L, Sado PE, Branlard G, Charmet G, Guillon F. Wheat arabinoxylans: exploiting variation in amount and composition to develop enhanced varieties. J Cereal Sci. 2007;46(3):261–81. Cosgrove DJ. Growth of the plant cell wall. Nat Rev Mol Cell Biol. 2005;6(11):850–61. Kidder DE, Manners MJ. The level of distribution of carbohydrases in the small intestine mucosa of pigs from 3 weeks of age to maturity. Br J Nutr. 1980;43(1):141–53. Preynat A, Gady C, Saulnier L, Bonnin E, Geraert PAG. Can we predict enzyme response in relation with wheat cultivar in broilers? In: 17th European Symposium on Poultry Nutrition, Edinburgh, Scotland, 2009 (Poster) Hübener K, Vahjen W, Simon O. Bacterial responses to different dietary cereal types and xylanase supplementation in the intestine of broiler chicken. Arch Anim Nutr. 2002;56(3):167–87. Torok VA, Ophel-Keller K, Loo M, Hughes RJ. Application of methods for identifying broiler chicken gut bacterial species linked with increased energy metabolism. Appl Environ Microbiol. 2008;74(3):783–91. Classen HL. Cereal grain starch and exogenous enzymes in poultry diets. Anim Feed Sci Technol. 1996;62(1):21–7. Romero LF, Plumstead PW, Ravindran V. Energy contribution of digestible starch, fat, and protein in response to combinations of exogenous xylanase, amylase, and protease in corn-based broiler diets. Poult Sci. 2011;90(1):20. Courtin CM, Broekaert WF, Swennen K, Lescroart O, Onagbesan O, Buyse J, et al. Dietary inclusion of wheat bran arabinoxylooligosaccharides induces beneficial nutritional effects in chickens. Cereal Chem. 2008;85(5):607–13. Nian F, Guo YM, Ru YJ, Péron A, Li FD. Effect of xylanase supplementation on the net energy for production, performance and gut microflora of broilers fed corn/soy-based diet. Asian-Aust J Anim Sci. 2011;24(9):1282–7. Aulrich K, Flachowsky G. Studies on the mode of action of non-starch-polysaccharides (NSP) degrading enzymes in vitro. 1-Communication: Effects on the fractions of NSP. Arch Anim Nutr. 1998;51(4):293–306. Biely P, Vrsanskà M, Tenkanen M, Kluepfel D. Endo-beta-1,4-xylanase families: differences in catalytic properties. J Biotechnol. 1997;57(1–3):151–66. Brutus A, Villard C, Durand A, Tahir T, Furniss C, Puigserver A, et al. The inhibition specificity of recombinant Penicillium funiculosum xylanase B towards wheat proteinaceous inhibitors. Biochim Biophys Acta. 2004;1701(1–2):121–8. Pratap J, Rajamohan G, Dikshit K. Characteristics of glycosylated streptokinase secreted from Pichia pastoris: enhanced resistance of SK to proteolysis by glycosylation. Appl Microbiol Biotechnol. 2000;53(4):469–75. Elliott GO, McLauchlan WR, Williamson G, Kroon P. A wheat xylanase inhibitor protein (XIP-I) accumulates in the grain and has homologues in other cereals. J Cereal Sci. 2003;37(2):187–94. Bonnin E, Daviet S, Gebruers K, Delcour JA, Goldson J, Juge N, et al. Variation in the levels of the different xylanase inhibitors in grain and flour of 20 French wheat cultivars. J Cereal Sci. 2005;41(3):375–9.