In vitro enzymatic assays of photosynthetic bacterial 3-vinyl hydratases for bacteriochlorophyll biosyntheses
Tóm tắt
A chlorosome is a large and efficient light-harvesting antenna system found in some photosynthetic bacteria. This system comprises self-aggregates of bacteriochlorophyll (BChl) c, d, or e possessing a chiral 1-hydroxyethyl group at the 3-position, which plays a key role in the formation of the supramolecule. Biosynthesis of chlorosomal pigments involves stereoselective conversion of 3-vinyl group to 3-(1-hydroxyethyl) group facilitated by a 3-vinyl hydratase. This 3-vinyl hydration also occurs in BChl a biosynthesis, followed by oxidation that introduces an acetyl group at the 3-position. Herein, we present in vitro enzymatic assays of paralogous 3-vinyl hydratases derived from green sulfur bacteria, Chlorobaculum tepidum and Chlorobaculum limnaeum, the filamentous anoxygenic phototroph Chloroflexus aurantiacus, and the chloracidobacterium Chloracidobacterium thermophilum. All the hydratases showed hydration activities. The biosynthetic pathway of BChl a and other chlorosomal pigments is discussed considering the substrate specificity and stereoselectivity of the present hydratases.
Tài liệu tham khảo
Blankenship RE (2014) Molecular mechanism of photosynthesis, 2nd edn. Wiley, Hoboken, pp 1–9
Blankenship RE, Matsuura K (2003) Antenna complexes from green photosynthetic bacteria. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis. Kluwer Academic Publishers, Dordrecht, pp 195–217
Bollivar DW, Suzuki JY, Beatty JT, Dobrowolski JM, Bauer CE (1994) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237:622–640
Bryant DA, Costas AMG, Maresca JA, Chew AGM, Klatt CG, Bateson MM, Tallon LJ, Hostetler J, Nelson WC, Heidelberg JF, Ward DM (2007) Candidatus Chloracidobacterium thermophilum: an aerobic phototrophic acidobacterium. Science 317:523–526
Chew AGM, Frigaard N-U, Bryant DA (2004) Identification of BchV, a C-31 hydratase specific for hypermethylated bacteriochlorophyll c in Chlorobaculum tepidum. In: van der Est A, Bruce D (eds) Photosynthesis: fundamental aspects to global perspectives research. Allen Press, Lawrence, pp 875–877
Costas AMG, Amaya M, Liu Z, Tomsho LP, Schuster SC, Ward DM, Bryant DA (2012a) Complete genome of Candidatus Chloracidobacterium thermophilum, a chlorophyll-based photoheterotroph belonging to the phylum Acidobacteria. Environ Microbiol 14:177–190
Costas AMG, Tsukatani Y, Rijpstra WIC, Schouten S, Welander PV, Summons RE, Bryant DA (2012b) Identification of the bacteriochlorophylls, carotenoids, quinones, lipids, and hopanoids of “Candidatus Chloracidobacterium thermophilum”. J Bacteriol 194:1158–1168
Fages F, Griebenow N, Griebenow K, Holzwarth AR, Schaffner K (1990) Characterization of light-harvesting pigments of Chloroflexus aurantiacus. Two new chlorophylls: oleyl (octadec-9-enyl) and cetyl (hexadecanyl) bacteriochlorophyllides-c. J Chem Soc Perkin Trans 1:2791–2797
Fajer J (2004) Chlorophyll chemistry before and after crystals of photosynthetic reaction centers. Photosynth Res 80:165–172
Frigaard N-U, Chew AGM, Li H, Maresca JA, Bryant DA (2003) Chlorobium tepidum: insights into the structure, physiology, and metabolism of a green sulfur bacterium derived from the complete genome sequence. Photosynth Res 78:93–117
Ganapathy S, Oostergetel GT, Wawrzyniak PK, Reus M, Chew AGM, Buda F, Boekema EJ, Bryant DA, Holzwarth AR, de Groot HJ (2009) Alternating syn-anti bacteriochlorophylls form concentric helical nanotubes in chlorosomes. Proc Natl Acad Sci USA 106:8525–8530
Harada J, Saga Y, Yaeda Y, Oh-oka H, Tamiaki H (2005) In vitro activity of C-20 methyltransferase, BchU, involved in bacteriochlorophyll c biosynthesis pathway in green sulfur bacteria. FEBS Lett 579:1983–1987
Harada J, Mizoguchi T, Satoh S, Tsukatani Y, Yokono M, Noguchi M, Tanaka A, Tamiaki H (2013) Specific gene bciD for C7-methyl oxidation in bacteriochlorophyll e biosynthesis of brown-colored green sulfur bacteria. PLoS ONE 8:e60026. doi:10.1371/journal.pone.0060026
Harada J, Teramura M, Mizoguchi T, Tsukatani Y, Yamamoto K, Tamiaki H (2015) Stereochemical conversion of C3-vinyl group to 1-hydroxyethyl group in bacteriochlorophyll c by the hydratases BchF and BchV: adaptation of green sulfur bacteria to limited-light environments. Mol Microbiol 98:1184–1198
Kunieda M, Mizoguchi T, Tamiaki H (2004) Diastereoselective self-aggregation of synthetic 3-(1-hydroxyethyl)-bacteriopyrochlorophyll-a as a novel photosynthetic antenna model absorbing near the infrared regions. Photochem Photobiol 79:55–61
Liu Z, Bryant DA (2011) Identification of gene essential for the first committed step in the biosynthesis of bacteriochlorophyll c. J Biol Chem 286:22393–22402
Maresca JA, Chew AGM, Ponsatí MR, Frigaard N-U, Ormerod JG, Bryant DA (2004) The bchU gene of Chlorobium tepidum encodes the C-20 methyltransferase in bacteriochlorophyll c biosynthesis. J Bacteriol 186:2558–2566
Miyatake T, Tamiaki H (2005) Self-aggregates of bacteriochlorophylls-c, d and e in a light-harvesting antenna system of green photosynthetic bacteria: effect of stereochemistry at the chiral 3-(1-hydroxyethyl) group on the supramolecular arrangement of chlorophyllous pigments. J Photochem Photobiol C 6:89–107
Mizoguchi T, Nagai C, Kunieda M, Kimura Y, Okamura A, Tamiaki H (2009) Stereochemical determination of the unique acrylate moiety at the 17-position in chlorophylls-c from a diatom Chaetoceros calcitrans and its effect upon electronic absorption properties. Org Biomol Chem 7:2120–2126
Mizoguchi T, Harada J, Tamiaki H (2012) Characterization of chlorophyll pigments in the mutant lacking 8-vinyl reductase of green photosynthetic bacterium Chlorobaculum tepidum. Bioorg Med Chem 20:6803–6810
Mizoguchi T, Harada J, Tsukatani Y, Tamiaki H (2014) Isolation and characterization of a new bacteriochlorophyll-c bearing a neopentyl substituent at the 8-position from the bciD-deletion mutant of the brown-colored green sulfur bacterium Chlorobaculum limnaeum. Photosynth Res 121:3–12
Mizoguchi T, Harada J, Yamamoto K, Tamiaki H (2015) Inactivation of bciD and bchU genes in the green sulfur bacterium Chlorobaculum limnaeum and alteration of photosynthetic pigments in the resultant mutants. J Photochem Photobiol A 313:52–59
Nomata J, Mizoguchi T, Tamiaki H, Fujita Y (2006) A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem 281:15021–15028
Oba T, Tamiaki H (1999) Why do chlorosomal chlorophylls lack the C132-methoxycarbonyl moiety? An in vitro model study. Photosynth Res 61:23–31
Olson JM (1998) Chlorophyll organization and function in green photosynthetic bacteria. Photochem Photobiol 67:61–75
Orf GS, Blankenship RE (2013) Chlorosome antenna complexes from green photosynthetic bacteria. Photosynth Res 116:315–331
Ryan AA, Senge MO (2015) How green is green chemistry? Chlorophyll as a bioresource from biorefineries and their commercial potential in medicine and photovoltaics. Photochem Photobiol Sci 14:638–660
Saga Y, Shibata Y, Itoh S, Tamiaki H (2007) Direct counting of submicrometer-sized photosynthetic apparatus dispersed in medium at cryogenic temperature by confocal laser fluorescence microscopy: estimation of the number of bacteriochlorophyll c in single light-harvesting antenna complexes of green photosynthetic bacteria. J Phys Chem B 111:12605–12609
Tamiaki H (1996) Supramolecular structure in extramembraneous antennae of green photosynthetic bacteria. Coord Chem Rev 148:183–197
Tamiaki H, Takeuchi S, Tsudzuki S, Miyatake T, Tanikaga R (1998) Self-aggregation of synthetic zinc chlorins with a chiral 1-hydroxyethyl group as a model for in vivo epimeric bacteriochlorophyll-c and d aggregates. Tetrahedron 54:6699–6718
Tamiaki H, Shibata R, Mizoguchi T (2007) The 17-propionate function of (bacterio)chlorophylls: biological implication of their long esterifying chains in photosynthetic system. Photochem Photobiol 83:152–162
Tamiaki H, Machida S, Mizutani K (2012) Modification of 3-substituents in (bacterio)chlorophyll derivatives to prepare 3-ethylated, methylated, and unsubstituted (nickel) pyropheophorbides and their optical properties. J Org Chem 77:4751–4758
Tamiaki H, Teramura M, Tsukatani Y (2016) Reduction processes in biosynthesis of chlorophyll molecules: chemical implication of enzymatically regio- and stereoselective hydrogenations in the late stages of their biosynthetic pathway. Bull Chem Soc Jpn 89:161–173
Tang K-H, Barry K, Chertkov O, Dalin E, Han CS, Hauser LJ, Honchak BM, Karbach LE, Land ML, Lapidus A, Larimer FW, Mikhailova N, Pitluck S, Pierson BK, Blankenship RE (2011) Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus. BMC Genomics 12:334. doi:10.1186/1471-2164-12-334
Teramura M, Harada J, Mizoguchi T, Yamamoto K, Tamiaki H (2016a) In vitro assays of BciC showing C132-demethoxycarbonylase activity requisite for biosynthesis of chlorosomal chlorophyll pigments. Plant Cell Physiol 57:1048–1052
Teramura M, Harada J, Tamiaki H (2016b) In vitro stereospecific hydration activities of the 3-vinyl group of chlorophyll derivatives by BchF and BchV enzymes involved in bacteriochlorophyll c biosynthesis of green sulfur bacteria. Photosynth Res 130:33–45
Tsukatani Y, Romberger S, Golbeck J, Bryant D (2012) Isolation and characterization of homodimeric type-I reaction center complex from Candidatus Chloracidobacterium thermophilum, an aerobic chlorophototroph. J Biol Chem 287:5720–5732
Tsukatani Y, Yamamoto H, Harada J, Yoshitomi T, Nomata J, Kasahara M, Mizoguchi T, Fujita Y, Tamiaki H (2013) An unexpectedly branched biosynthetic pathway for bacteriochlorophyll b capable of absorbing near-infrared light. Sci Rep 3:1217. doi:10.1038/srep01217
Wakao N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S, Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37:889–893